
Quasi-steady dissipative nonlinear critical layer in a stratified shear flow
Yu. I. Troitskaya and S. N. Reznik
Institute of Applied Physics, Russian Academy of Sciences, Nizhniy Novgorod, Russia

~Received 16 November 1995; accepted 8 July 1996!

When a wave with small but finite amplitude« propagates towards the CL, where the effects of
nonlinearity and dissipation are essential, the jump of mean vorticity over the CL appears. For the
dynamically stable stratified shear flow with the gradient Richardson numberRi.1/4 the jump of
vorticity has the same order as the undisturbed one@J. Fluid Mech.233, 25 ~1991!#. The process of
formation of the flow with this substantial jump of vorticity~or ‘‘break’’ of the velocity profile! in
the CL is studied at large time after beginning of the process. The transition region between the CL
and the undisturbed flow, the dissipation boundary layer~DBL!, is shown to be formed. Its thickness
grows in time proportional toAt ~t being time!, and the CL moves towards the incident wave. When
the jump of the wave momentum flux over the CL is constant in time, the flow characteristics can
be found in the most simple way. The velocity profile in the DBL appears to be self-similar, the
displacement of the CL is proportional toAt and the values of vorticity at the both sides of the CL
do not depend on time and they are determined only by the constant wave momentum flux. It is
shown that, to provide the constant jump of the wave momentum flux the amplitude of the wave
radiated by the source in the undisturbed flow region should vary in a certain complicated manner,
because it reflects from the time-dependent~broadening! velocity profile in the DBL. On the other
hand, the wave momentum flux from the steady source~for example, the corrugated wall! depends
on time. When the coefficients of reflection from the CL (R) and from the DBL (r ) are small, this
dependence is weak and the wave and flow parameters depending on time are found as series inR
andr . The wave–flow interaction for this case is studied. ©1996 American Institute of Physics.
@S1070-6631~96!01011-2#

I. INTRODUCTION

The investigation of singular wavelike disturbances of
small amplitude« superimposed on shear flows leads to the
problem of removing singularities in equations for the dis-
turbances. The singularities occur at the critical points,
where the phase velocity of the perturbation coincides with
the flow velocity. One of the approaches to solving the prob-
lem is taking into account dissipation and nonlinearity in the
critical layer ~CL!—the small vicinity around the critical
point. It corresponds to the result of evolution of the flow at
large time. This approach was employed in the works by
Haberman1,2 for homogeneous and slightly stratified shear
flows and in the paper by Troitskaya3 for the flow with the
gradient Richardson numberRi.1/4. The last work further is
called I for short. It is shown in the works cited, that the
combined effect of nonlinearity and dissipation leads to de-
formation of the mean velocity profile, namely a jump of the
mean vorticity across the CL arises, i.e. foruzu→` the vor-
ticity averaged over the wave period,
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denotingV0 the undisturbed vorticity,z the vertical coordi-
nate,zc the CL coordinateDG is the normalized vorticity
jump, G is a constant discussed below. The value ofDG
appears to be larger in order than the disturbance of order«
causing it. For the logarithmic singularity in the wavelike
disturbance of a homogeneous flow1 and the Rossby wave on

the b-plane6 DG is of order «1/2. For the algebraic branch
point in the stratified shear flow the value ofDG is of unity
order forRi.1/4 ~I !.

The mean velocity disturbance related to the vorticity~1!
grows to infinity with the distance from the CL. To limit this
growth one must come out of the framework of the steady
approximation and take into account time evolution as it was
supposed in the works by Maslowe.4,5 For example, the un-
steady process of vorticity diffusion from the CL due to vis-
cosity leads to arising of diffusion layers, where the mean
flow distortion drops with the distance from the CL. This
approach was employed for the Rossby wave CL,6 when the
mean flow distortion is the small value of order«1/2. The
similar diffusion layers was obtained7,8 in the weak-
nonlinear approximation for the stratified shear flow with the
Richardson numberRi'1/4, when the deformation of the
mean velocity profile and the jump of vorticity are not large.
In the present work, the stratified shear flow withRi.1/4 is
considered, when the vorticity jump has the same order as
the vorticity of the undisturbed flow. It leads to some specific
properties of the flow in the diffusion layers in comparison
with the homogeneous flow and the stratified flow withRi
'1/4. In particular, in the process of the unsteady deforma-
tion of the velocity profile, the CL is moving towards the
incident wave proportionally toAt ~wheret is the time from
the start of the process!. The similar displacement of the CL
was obtained in the numerical experiment.9

It should be taken into account that the vorticity jump
DG in ~1! can be obtained within the steady approximation,
but the quantityG is the arbitrary constant of the stationary
problem, i.e. in the steady approximation one can find only
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the difference~G12G2!, but not the values of vorticity on
both sides of the CL ~G1511G1DG/2 and
G2511G2DG/2!. G1 andG2 can be obtained only within
the unsteady problem and the result depends on the boundary
conditions in the outer region of the CL. In the present work,
G1 and G2 are found for the unbounded shear flow, when
disturbances decrease at infinity. It should be mentioned that
for the Rossby waves on the zonal shear flow whenDG is
small value of order«1/2, the solution to the initial problem
givesG506 andG6516DG/2. In the present caseG is shown
to be not equal to zero.

In section II, the main equations for the problem are
formulated. The qualitative properties of the flow in the CL
vicinity and the basic approximations are discussed in sec-
tion III. In section IV the process of diffusion of the mean
vorticity from the steady source posed in the CL is studied.
The wave–flow interaction is investigated in section V. In
section VI the numerical model employed for the investiga-
tion of the CL is briefly described and the dependence of the
CL parameters on the inverse inner Reynolds number in the
CL is presented. They are similar to the results obtained inI .
Finally, the example of deformation of the mean velocity
profile due to interaction with the waves generated by the
stratified shear flow over a corrugated surface is considered
in section VII.

II. THE BASIC EQUATIONS

Consider the stratified shear flow with the undisturbed
velocity and density vertical profilesV0(zd) andr0(zd), re-
spectively ~zd being the dimensional vertical coordinate!.
Suppose that the gradient Richardson number, equal to
N2/(dV0/dzd)

2.1/4 everywhere in the flow @where
N252(g/r0)(dr0/dzd) is the buoyancy frequency#. Con-
sider the problem of wave propagation towards this flow.
Suppose that the flow velocity coincides with the phase
speed of the wave at some level. In the vicinity of this level
the critical layer~CL! is formed, where strong wave–flow
interaction takes place. In the process of the wave–flow in-
teraction two stages can be specified. Flow evolution at the
beginning stage depends on the amplitude and the shape of
the front of the incident wave. If the amplitude is large and
the front is sharp enough then the complicated nonlinear
transition process takes place~high harmonic generation,
wave induced instability, etc.!. This process can be studied
only in the framework of the numerical models.10,11 After
relaxation of the transition process due to viscosity the quasi-
steady flow is established and the time evolution is deter-
mined by the slow diffusion process. In this case the flow in
the CL vicinity is almost steady, and its dynamics is deter-
mined by balance of nonlinearity and dissipation. Within the
Boussinesq approximation, the nondimensional equations for
the vorticity and density are as follows:
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Here, x and z are nondimensional horizontal and vertical
coordinates normalized on the scale of the mean flowL0; t is
nondimensional time normalized by the characteristic scale
of the mean flowL0/U0 ; U0 is the characteristic velocity of
the mean flow;c is the nondimensional stream function
scaled byL0U0 ; v is the dimensionless vorticity scaled by
U0/L0 ; r is the nondimensional density, normalized by its
character valuer00; Re5U0L0/n0 is the Reynolds number
defined in terms of the parameters of the mean flow;
Pr5n0/n t is the Prandtl number;n0, nt are the viscosity and
the thermoconductivity coefficients;g85gL0/U0

2 is the di-
mensionless gravity.

Suppose that the harmonic wave of small amplitude ra-
diated by an external source propagates towards the basic
flow described above and the phase speed of the wave coin-
cides with the flow velocity at some level. Then CL is
formed in the vicinity of this level, where strong wave–flow
interaction takes place. It is accompanied with slow variation
in time of the mean flow and the wave amplitude and gen-
eration of the high harmonics of the basic disturbance. Then
the solution to the system~2! can be searched as follows:

c5Ez

U~z,t !dz1«(
j51

`

Rec j~z,t !e
2 ik j §,

where§5x2ct, c is the dimensionless phase velocity of the
wave,k is the dimensionless wave number scaled byL0. It
should be emphasized that both the wave field amplitude and
the mean velocity profile can depend on time.

The nonlinear system~2! can be linearized relative to the
mean flow if the disturbance amplitude« is small. Neglect-
ing the dissipation and time dependence of the wave ampli-
tude gives the Taylor–Goldstein equation for the complex
amplitude of the basic disturbance of the stream functionc1,

d2c1

dz2
2
d2U/dz2

U2c
c11S ~NL0 /U0!
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2k2Dc150. ~3!

The density disturbancer1 is expressed byc1 in the follow-
ing way:

r152
~NL0 /U0!

2

U2c
c1 . ~4!

Equations~3! and ~4! have the singularity pointszc , where
U(zc)5c ~zc is the critical level!. It means that the approxi-
mation neglecting dissipation, nonlinearity and time depen-
dence is invalid in the CL-vicinity and these factors should
be taken into account here. The regions where they are es-
sential are called nonlinear, viscous and nonstationary CL,
respectively. The scales of the CL are as follows:12–15

dv is5~ReUzk!21/3: dnl5«2/3;
~5!

d t5S u]c/]tu
ucu D ~kUz!

21.
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The nonlinear effects in the CL are investigated below,
so the transformation from the dimensionless variables
z,x,t,c,v,r to the intrinsic variables of the nonlinear CL is
made:

h5z/«2/3 is the ‘‘inner’’ vertical coordinate,
t5kt«2/3V0 is the ‘‘inner’’ time,
V0 is the dimensionless vorticity value far from the CL,
j5k§ is the normalized intrinsic horizontal coordinate,
w5~c2cz!/«4/3V0 is the inner stream function,
x5v/V0 is the normalized vorticity,
b5(r21)/(«2/3(2dr0/dz)) is the ‘‘inner’’ density,

heredr0/dz is the characteristic dimensionless density gra-
dient of the basic flow far from the CL.

In the inner variables the system~2! is as follows:
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wherel5~kRe«2V0!
21 is the nonlinearity parameter,Ri is

characteristic value of the Richardson number of the basic
flow far from the CL. It obviously follows from~6! andl is
the inverse value of the Reynolds number in the CL defined
in terms of the vertical coordinate. Taking~5! into account
givesl5(dv is/dnl)

3. Herea5k«2/3 is the ratio of the nonlin-
ear CL scale to the horizontal wavelength. Further, the wave
amplitude« is supposed to be small enough, soa!1, and the
termsa2]2f /]j2 ~where f5$x,b,c%! can be neglected con-
sidering flows in the vicinity of the CL with the characteris-
tic scale of orderdnl ~5!. But far from the CL the vertical
scale of the disturbances increases and these terms can be-
come essential.

The investigation of the evolution of the flow in the CL
vicinity will be made within the system~6!. Since the distur-
bance is supposed to be periodically varying in the coordi-
nate j, the hydrodynamic fields can be represented as the
sum of two components, namely, one that is averaged over
the disturbance period and one that isj-dependent~periodic
in space!, i.e.

w5w0~h,t!1w8~h,j,t!,

b5b0~h,t!1b8~h,j,t!,

x5x0~h,t!1x8~h,j,t!.

Far from the CL,w0, b0, x0 tend to undisturbed values
andw8, b8, x8 have the sense of the wave disturbance. First,
consider the evolution of the average fields.

III. THE QUALITATIVE PROPERTIES OF THE FLOW IN
THE CL VICINITY. THE BASIC APPROXIMATIONS

The equations for the average vorticityx0 and densityb0
fields can be obtained by averaging of the first and second
equations of the system~6! over the period of disturbances.
The transformation gives

]x0

]t
2l

]2x0

]h2 52
1

2p

]2

]h2 E
0

2p

whwjdj, ~7!

]b0
]t

2
l

Pr

]2b0
]h2 52

1

2p

]

]h E
0

2p

bwjdj,

~8!

x05
]2w0

]h2 .

Integrating~7! with respect toh gives the equation for the
mean horizontal velocity,
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The source in the diffusion equation~9! is the radiation
force,

Frad5
]T

]h
,

where

T52
1

2p E
0

2p

whwjdj ~10!

is the vertical flux of the horizontal momentum~the radiation
stress or the Reynolds stress!. A simple physical interpreta-
tion of the equation~9! can be proposed. It is the equation of
motion of a liquid particle averaged over the disturbance
period, where the averaged acceleration is determined by the
radiation and viscous forces. The form of the equation~8! for
the average density is similar to~9!. Equation~8! is the dif-
fusion equation in which the source is equal to the first de-
rivative of the vertical mass flux,

B52
1

2p E
0

2p

bwjdj. ~11!

It obviously follows from ~8! that variation of the average
density at some level is determined by the ‘‘flowing into and
out’’ mass fluxes and by diffusion of the density.

To complete the formulation of the problem, the initial
and boundary conditions for the partial differential equations
~7!, ~8!, ~9! should be given. At the initial moment the ve-
locity and density profiles are supposed to be linear, i.e.

u05h; b052h.

At infinity ~h→6`! the distortions of the average profiles
are supposed to vanish—

u0~h→6`,t!5h,
~12!

b0~h→6`,t!52h.

First, consider qualitatively the evolution of the average
flow at large time using the qualitative properties of the
equation~9!. Suppose that the time variation of the flow in
the CL vicinity is determined only by the diffusion process.
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This supposition is correct, because the flow is stable.~No
processes more rapid than diffusion are discussed below.! In
this case the CL becomes quasi-stationary at a sufficiently
large time period, more exactly large in comparison with the
diffusion time at the scale of the CL:

t@
d2

l
. ~13!

The scale of the quasi-stationary CL is determined by the
viscosity or nonlinearity, it is of orderl1/3 in the first case
and of order 1 in the second case, i.e.

d5max$l1/3,1%. ~14!

Expression~13! is the necessary~but not sufficient! condi-
tion of quasi-stationarity of the CL. The conditions of quasi-
stationarity are discussed below in detail.

Since diffusion is a decelerating process, the CL be-
comes more ‘‘stationary’’ with time. The wave momentum
flux is known to be constant in the quasi-stationary waves.
This means that]T/]hÞ0 only in the CL-vicinity of widthd,
i.e. only here the radiation force differs from zero. In the
quasi-stationary CL the radiation force should be balanced
by the viscous force, so the jump of vorticity across the CL
appears as in the stationary CL~see I !. Suppose that the
wave propagates towards the CL in the negative direction of
the vertical axes like inI . Then the direction of the radiation
force in the CL vicinity determines that in the regionh.0
the value of the mean vorticity is greater than the undis-
turbed one and in the regionh,0 it is less than the undis-
turbed one. And there is no disturbance of vorticity far from
the CL ~for h→6`! @see~12!#. Diffusion of vorticity from
the CL occurs due to viscosity. So the transition region from
the CL to the undisturbed flow is forming. Further, it is
called the diffusion boundary layer~DBL!. It obviously fol-
lows from the equation~9! that the scale of the diffusion
spreading of the flow in DBL is the diffusion lengthAlt,
i.e. it grows in time.

The critical level is the point at the velocity profile,
where the flow velocity is constant and equal to the phase

velocity of the wave. At this point, there is the ‘‘break’’ of
the velocity profile.@The scale of this breakd is nonzero, but
small in comparison with the diffusion lengthAlt according
to ~13!.# This profile can be realized only if the CL is moving
in the positive direction ofh, i.e. towards the incident wave
momentum flux. The similar displacement was obtained in
the numerical experiment.9 Although the law of motion of
CL was more complicated, namely, acceleration occurred at
the beginning and deceleration later, that behavior took place
because the beginning stage of the wave–flow interaction in
the CL was studied, when the time from the start of the
process was less than the time of diffusion at the scale of the
CL ~see Ref. 9!. It should be mentioned that according to the
review article by Stewartson16 there is only one mesh point
on the CL in these calculations. But the width of the nonlin-
ear and viscous CL was about 20 m and the grid step 31

3 m.
Our control calculations show that the computation error is
rather small for this relation between the grid step and the
CL scale.

Now we will obtain quantitatively these qualitative prop-
erties. In general the law of the CL motion can be presented
as follows:

h5s~t!Alt, ~15!

heres~t! is an unknown function to be determined.
In the vicinity of the moving CL the natural coordinate is

the ‘‘intrinsic’’ one,

h5h2s~t!Alt.

Considering diffusion processes, it is convenient to use the
quantity

n5
1

2Alt
, ~16!

i.e. the inverse diffusion length instead of time.
The hydrodynamic equations~6! in the variablesh, j, n

~instead ofh, j, t! are expressed in the following way:

~17!
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At large time periods when~13! is valid there are two
strongly different scalesd, defined by~14!, and 1/n @n is
defined by~16!# in the system~17!, so it can be solved by the
method of matched asymptotic expansions in the small pa-
rameterdn equal to the relation of the CL width to the dif-
fusion scale at large time period. Becaused is of order unity
within a wide range of the parameterl, the expansion is
made in the parametern.

A. Inner solution

The zeroth order inn corresponds to the quasi-stationary
approximation when all the terms containingn-products can
be omitted. The system~17! enables us to obtain some addi-
tional limitations on using of the quasistationary approxima-
tion in the CL vicinity. This approximation is valid if the
terms I and II are small in comparison with III and the right
hand sides~RH!. Namely

I!III, ln2!h, t@1/h, ~18a!

I!RH, ln2!l/h2, t@h2/l, ~18b!

II!III, lsn/h!h, Alt@ls/h2, ~18c!

II!RH, lsn/h!l/h2, t@h2/ls2. ~18d!

The inequalities~18! are written in both variablesn andt.
Let us discuss the sense of inequalities~18!. First, it

should be taken into account that the terms I describe time
evolution in the frame of reference moving according to
~15!, and the terms II describe the influence of variable bulk
motion. The characteristic time scale of the terms I ist, and
the time scale of the terms II is the time of the CL displace-
ment from the pointh to the pointh1h, which is approxi-
mately equal tohAt/sAl @see~15!#. The terms III describe
inertial motion with the characteristic time scale 1/h and the
right hand ~RH! describes the diffusion at the distanceh,
which has the characteristic timeh2/l. The inequalities~18a!
and~18b! mean that the characteristic time after beginning of
the processt is large in comparison with the characteristic
inertia time and the time of diffusion at the distance of order
h. The inequalities~18c! and ~18d! mean that the character-
istic time of the CL displacement at the distanceh is large in
comparison with the characteristic times of inertia and diffu-
sion at the distanceh. Since translation of the CL is the
decelerated motion, it does not influence the flow in the CL
vicinity at sufficiently large time. The opposite case was
studied by Haynes and Cowley18 when the uniform motion
of the inviscid CL for the Rossby wave dramatically changes
its inner flow.

If the inequalities~18! are valid the solution of the sys-
tem ~17! can be expressed as a series inn;

~x,b,w!5~x~0!,b~0!,w~0!!1n~x~1!,b~1!,w~1!!••• .

In the zeroth order of approximation inn, the system~17! is
as follows:
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The system~19! was considered already inI .
For uhu@d ~but uhu ! Alt!, the profiles of vorticity and

the Brunt–Vâisâlâ frequency averaged over a period of dis-
turbances are constant. Then the wave disturbances can be
easily found from the Taylor–Goldstein equation by the
Frobenius method. As a result, the asymptotic solution of
~19! for d !u hu ! Alt is as follows:
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wherem6 5 ARi/G6
2 21/4.

The following expression for the values of the jump of
the vorticity ~G12G2! across the CL can be found as inI :

2l~G12G2!5T~1`!2T~2`!. ~21a!

Using ~20! it can be easily obtained from~10!, that

T~6`!5m6 (
n51

`

~ uA6
~n!u22uB6

~n!u2!.

The jump of the density gradient across CL is absent, and

N1
2 5N2

2 51. ~21b!

Here the problem of harmonic wave propagation to-
wards the CL is studied, soA1

~1!Þ0. The amplitudes of other
harmonics can be found from the solution of the set~19! ~see
Sec. VI!. It should be mentioned, however, as was demon-
strated inI , for moderate Richardson numbers the amplitudes
of high harmonics were very small in comparison with the
amplitude of the fundamental harmonic foruhu@d. So further
they will be neglected in this region. Note that the similar
property of high harmonics to be small in comparison with
the fundamental one was demonstrated in other different
kinds of flows with CL. So Smith and Bodonyi17 show the
insignificant role of high harmonics for homogeneous flow
with the logarithmic singularity in the CL. For the margin-
ally stable stratified shear flow with the algebraic branch
point in the CL calculation carried out by Churilov and
Shukhman8 revealed that the contribution of the second har-
monic to the Landau constant in the Landau–Stewart equa-
tion was 5 times smaller than the contribution of the mean
flow, i.e. the nonlinear effect was determined mainly by the
interaction of the fundamental harmonic and the mean flow.
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B. Outer solution

Consider now the region of the diffusion boundary layer,
whereh˜Alt i.e., the conditions~18b! and ~18d! are not
valid. The outer vertical variableH5nh is natural for this
region. The inner solution~20a! and ~20b! expressed in the
variableH has the following form:
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The outer variables of the DBL follow from~22!:

F5n2w~0!,

b5nb~0!,

V5nu~0!5n
]w~0!

]h
,

X5x~0!5
]2w~0!

]h2
.

The equations~17! are expressed in the outer variables in the
following way:
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]b

]H

]F

]j

5
l

Pr
n3S ]2b

]H2 12n
]b

]n
12SH1

s

2
2

n

2

ds

dn D ]b

]H
22b

1
a2

n2
]2b

]j2 D ,
X5

]2F

]H2 1
a2

n2
]2F

]j2
.

The fieldsF, b andX can be presented as a sum of the
averaged components and thej-dependent disturbances in
the following way@see~22!#:

~F,b,X!5~F0~H,n!,b0~H,n!,X0~H,n!!

1n3/2~F1~H,n!,b1~H,n!,X1~H,n!!ei j.

The solutions both for the averaged fields and for the distur-
bances should be posed as a series inn. The linear approxi-
mation is valid and diffusion and time-dependence can be
neglected for the disturbances of the fields in the zeroth order
in n. The system for disturbances is as follows:

F0HX12F1X0H2Rib150,

F0Hb12F1b0H50, ~23!

X15F1HH1
a2

n2
F1 .

For the averaged fields diffusion and time-dependence
should be taken into account~it is quite natural at the diffu-
sion scale!. The system of equations for the averaged fields
in the lowest order inn is as follows:

]2X0

]H2 12n
]X0

]n
12SH1

s

2
2

n

2

ds

dn D ]X0

]H
5
1

l

]2T

]H2 , ~24a!

]2b0

]H2 12n
]b0

]n
12SH1

s

2
2

n

2

ds

dn D ]b0

]H
22b05

Pr

l

]B

]H
,

~24b!

X05
]2F0

]H2 . ~24c!

HereT andB are the wave fluxes of momentum and mass,
defined by the formula~10!, ~11!, respectively. In the quasi-
stationary approximationT andB do not depend on the ver-
tical coordinate everywhere out of the smalld-vicinity of the
CL @it follows from the systems~19! and~23!#. This scale in
the variableH is equal tond!1. This means that in the
zeroth order inn there are delta-functions in the right hand of
the equations~24a! and ~24b!, that are equivalent to defini-
tion of the boundary conditions on the CL.

The boundary condition on the CL for the outer solution
can be obtained by matching outer and inner solutions on the
CL. For the mean vorticityX0 and velocityV05]F0/]H it
follows from ~22a!, that

X0~H,n!5G6, for H,
.0, ~25a!

V0~H,n!5G6H1nc6, for H,
.0. ~25b!

Taking ~21a! into account yields

X0~10,n!2X0~20,n!5G12G25J~n!, ~26!

whereJ5(T(1`)2T(2`))/l is the normalized jump of
the wave momentum flux across the CL.

The second and the third boundary conditions,

V0~10,n!50,
~27!

V0~20,n!50,

follow from ~25b! in the zeroth order inn. The conditions
~27! point out that in the 0-th order innd the velocity of the
flow in the CL is equal to zero in the frame of reference
moving with the wave phase velocity by definition.
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The boundary condition on the CL for the density gradi-
ent can be obtained from~21b! similar to ~26!. Since the
vertical mass flux in internal waves is equal to zero outside
the CL, the boundary condition is as follows:

]b0

]H
~10,n!5

]b0

]H
~20,n!. ~28!

Taking into account~12! and the relation ofh toH gives
the boundary conditions for the velocity, vorticity and den-
sity at infinity in the following form:

V0~6`,n!5H1
s

2
, ~29a!

X0~6`,n!51, ~29b!

b0~6`,n!52SH1
s

2D . ~29c!

It should be mentioned that~29c! obeys the equation~24b!
and the boundary condition~28!, i.e. it is valid for everyH.

In the zeroth order inn the source in the equation~24a!
should be put equal to zero forH.0 andH,0, i.e. it takes
the form

]2X0

]H2 12n
]X0

]n
12SH1

s

2
2

n

2

ds

dn D ]X0

]H
50. ~30!

The equation~30! with the boundary conditions~26!, ~27!,
~29a!, ~29b! enables us to study the evolution of the flow in
the diffusion boundary layer at large time for an arbitrary,
but sufficiently slow, dependence of the wave momentum
flux on time.

IV. THE AVERAGE FIELDS OF VELOCITY AND
VORTICITY IN THE DIFFUSION BOUNDARY LAYER. A
CONSTANT JUMP OF THE WAVE MOMENTUM
FLUX

Consider the most simple, but important case of a con-
stant jump of the wave momentum flux across the CL, i.e.
suppose thatJ does not depend onn. In this case, the equa-
tion ~30! has a self-similar solution, the outer variables ap-
pear to be self-similar ones and the self-similar solutionX0
of ~30! does not depend onn ~i.e., on time!. ThenX0 obeys
the ordinary differential equation of the second order,

d2X0

dH2 12SH1
s

2D dX0
dH

50. ~31!

The solution of~31! is as follows@the indexes~6! relate to
H.0 andH,0#

X0~H !511C6E
6`

H1s/2

e2H1
2
dH1 . ~32!

The boundary condition at infinity~29b! is taken into ac-
count in ~32!. Integrating of~32! with respect toH and tak-
ing into account the boundary condition~29a! yields

V0~H !5H1
s

2

1C6F SH1
s

2D E6`

H1s/2

e2H1
2
dH11

1

2
e2~H1~s/2!!2G .

~33!

The boundary conditions~26!, ~27! define the system of 3
equations for determining of three unknown valuesC1 , C2

ands as functions ofJ which gives

C252
s

e2s2/41s~Ap2J!
,

~34!

C152
s

e2s2/42sJ
,

here

J5E
s/2

`

e2H2
dH.

The values of vorticity at both sides of the CL can be found
from ~32!. Namely, up to the CL,

X~10!5G15
e2s2/4

e2s2/42sJ
, ~35a!

and down to the CL,

X~20!5G25
e2s2/4

e2s2/41s~Ap2J!
. ~35b!

The equation determinings as a function ofJ is as follows:

e2s2/4sAp5J~e2s2/42sJ!~e2s2/41s~Ap2J!!.

The dependences~J! is shown in Fig. 1 and the depen-
dencies ofG6 onJ are presented in Fig. 2. A simple asymp-
totic expression can be found fors~J! andG6~J! for large
and small values ofJ, so, forJ!1,

s5
J

Ap
,

G6516
J

2
.

The similar expression for vorticity on both sides of the CL
was obtained,6 for a Rossby wave on theb-plane, where the
jump of vorticity related to the undisturbed one is the small
value of order«1/2.

For J@1,

s5A2J,

G15J,

G25
e2J/2

A2pJ
.

Substituting found valuesC1 andC2 into the expres-
sions ~32! and ~33! enables us to obtain the profiles of the

3319Phys. Fluids, Vol. 8, No. 12, December 1996 Yu. I. Troitskaya and S. N. Reznik

Downloaded¬25¬Apr¬2003¬to¬192.58.150.40.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/phf/phfcr.jsp



average velocity and vorticity in the DBL. The functions
V0(H) are presented in Fig. 3 for several values ofJ. The
time evolution of the mean velocity profileu0~h,t! is shown
in Fig. 4; it corresponds to the dependenceV0(H) for one
fixed J. The velocity profile is widening with time and the
CL is moving towards the incident wave momentum flux.
Thus, for the simplest situation of the constant wave momen-

tum flux we have determined the velocity profile in the DBL
and found the values of mean vorticity on both sides of the
CL for the knownJ.

V. THE WAVE DISTURBANCE IN THE DIFFUSION
BOUNDARY LAYER (CONSTANT WAVE MOMENTUM
FLUX)

Consider now wave–flow interaction in the DBL and in
the CL. The wave propagates from the regionH→` ~the
outer region of the flow!, where the velocity profile is deter-

FIG. 1. The dependence of the constant in the rule of the CL motion (s) on
the jump of vorticity~J!.

FIG. 2. The dependencies of the values of the mean vorticity at the different
sides of the CL~G6! on its jump~J!: 1.G1—the value of the mean vorticity
at the side of the incident wave; 2.G2—the value of the mean vorticity at
the side of the transmitted wave.

FIG. 3. The mean velocity profiles in the diffusion boundary layer. The
jump of vorticity takes values from 1~the lower curve! to 10 ~the upper
curve!.

FIG. 4. The mean velocity profilesu0~h,t! in the diffusion boundary layer
for t550, 100, 150, 200~from left to right!. The jump of vorticityJ52.
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mined by ~29a!. Propagating through the DBL, where the
velocity profile is determined by~33!, the wave partially re-
flects from the inhomogeneous vorticity profile, then the
wave interacts with the CL partially reflecting, partially
transmitting and partially absorbing. Note that the region of
the flow, where the hydrodynamic fields have the asymptotic
form ~20a! and ~20b!, will be called the outer region of the
CL; and the region, where the fields obey the nonlinear sys-
tem~19! will be termed the inner region of the CL~or simply
the CL!. The inhomogeneous vorticity profile also occurs in
the DBL down to the CL, so the transmitted wave scatters on
it. Transmitted through the DBL the wave radiates down, and
there is no incident wave radiated from minus infinity. As
was mentioned above, the fields of the high harmonics are
small in the DBL, so in this region we can take into account
only the fundamental harmonic described by the system~23!,
which can be reduced to the Taylor–Goldstein equation,

d2F1

dH2 2
V0HH

V0
F11SN2

V0
2

a2

n2 DF150. ~36!

The simplest case ofa2/n2!1 is considered here. When
a2/n2 is of order unity, nothing major would be changed, but
the expressions of the fields would be more complicated.

The profileV0(H) tends to the undisturbed linear form
~29a! for H→6`. Taking that into account gives the asymp-
totic form of the field forH→6`, i.e. the solution in the
outer region,

F1~H→`!5An~3/2!1 imF SH1
s

2D ~1/2!2 im

1RSH1
s

2D ~1/2!1 imG , ~37a!

F1~H→2`!5AT n~3/2!1 imFH1
s

2G ~1/2!2 im

, ~37b!

wherem 5 ARi21/4. The factorn(3/2)1 im arises due to nor-
malization. The formula~37b! is the radiation condition for
H→2`; it means that no wave propagates from the inner
region of the flow down to the CL.

The asymptotic expressions~20a! valid in the outer re-
gion of the CL are the fields on the ‘‘output’’ of the DBL, on
the ‘‘input’’ of which the asymptotics~37a! and ~37b! are
set. The amplitudes and reflection coefficients of the waves
on the ‘‘input’’ and the ‘‘output’’ are connected by the so-
lution of the Taylor–Goldstein equation~36!

The expressions connectingA andR ~37a! with A1
~1!

and B1
~1! from ~21a! and T ~37b! with A2

~1! and B2
~1! , are

found below. Introduce the symbolsA5A1
(1) ~the amplitude

of the wave, propagating towards the CL from its outer re-
gion! andR ~the reflection coefficient of the unit amplitude
wave from CL!. Then, as was shown inI , B1

(1)

5 ARuAu2(4/3)im1. And for H!1 the expression for the
stream function disturbance is as follows:

F15An~3/2!1 im@H ~1/2!2 im1

1RH~1/2!1 im1uAu2~4/3!im1n22im1#. ~38!

Passing through the DBL transforms the wave field~38! into
~37a!.

Suppose that the initial condition for the equation~36!
for H!1 are imposed in the form of a wave propagating
towards the CL, i.e.

F025H ~1/2!2 im1;
dF02

dH
5S 122 im1DH2~1/2!2 im1.

~39a!

ForH@1 the solution to~36! can be presented in the follow-
ing way:

F`25an~3/2!1 imF SH1
s

2D ~1/2!2 im

1r SH1
s

2D ~1/2!1 imG ,
wherea and r are the complex constants, depending on the
parameters of the equation~36!. r is the coefficient of reflec-
tion from the DBL,a is the amplitude of the wave propagat-
ing towards the DBL for the unity amplitude of the transmit-
ted wave. If the initial conditions forH!1 are imposed as
the wave propagating from the CL:

F015H ~1/2!1 im1;
dF01

dH
5S 121 im1DH2~1/2!1 im1;

~39b!

then forH@1 the wave field can be written in the following
way:

F`15F`2* 5a* n~3/2!2 imF SH1
s

2D ~1/2!1 im

1r * SH1
s

2D ~1/2!2 imG ,
where ~ !* denotes complex conjugation. It obviously fol-
lows from linearity of the equation~36!, absence of the criti-
cal point on the interval considered and the fact thatF01

5F02* .
If the initial conditions for ~36! are formulated in the

form ~38!, then forH@1 the solution is a linear combination
of F01 andF02, namely,

F`5An~3/2!1 im@F021RF01uAu2~4/3!im1n22im1#. ~40!

On the other hand,~40! must coincide with~37a!. Comparing
~37a! and ~40! gives

A5uauAeiwa~11uRuur ue2 i ~2wa1wr2wR!

3uAu2~4/3!im1n22im1!, ~41!

R5n2im1eiwr
ur u1uRue2 i ~2wa1wr2wR!uAu2~4/3!im1n22im1

11uRuur ue2 i ~2wa1wr2wR!uAu2~4/3!im1n22im1
.

~42!

Here uau, wa ; ur u, wr and uRu,wR are the modulus and argu-
ments of the complex valuesa, r andR. The complex values
r anda can be found by solving the equation~36! with the
initial conditions~39a!. The dependence ofr , a, wr andwa

onJ for the set of the Richardson numbersRi are presented
in Figs. 5, 6, 7, 8.
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Solving the equation~36! with the initial conditions
~37b! for H→2` ~with the corresponding first derivative!
gives the expressions forA2

~1! andB2
~1! from ~22a! and ~22b!

by T from ~37b!.
It was assumed above, that the vorticity jump across the

CL does not depend on time, and so the amplitude of the
incident waveA and the coefficient of reflectionR from the
CL in the outer region of the CL~not in the outer region of
the flow!! do not depend on time. More strictly, if the radia-
tion condition forH→2` is valid, then the wave field in the
lower outer region depends on time, because the wave trans-
mitted through the CL scatters on the time dependent DBL

down to the CL. But it slightly affects the dynamics of the
CL, because the transmitted wave amplitude is very small for
moderate and large Richardson numbers~seeI !; it is of order
emp. So the wave field up to the CL can only very slightly
depend on time, andA andR are practically constant for the
wave momentum flux jump~J!. Then for the constantJ, it
follows from ~41!, ~42! that in the outer region of the flow
the amplitude of the incident waveA and the wave reflec-
tion coefficientR depend on time. This time dependence
arises from the reflection of the incident wave from the time-
dependent velocity profile in the DBL~widening and mov-

FIG. 5. The dependence ofur u on J ——Ri50.5, ---Ri51, –––Ri52,
—— Ri53.

FIG. 6. The dependence ofuau on J ——Ri50.5, ---Ri51, –––Ri52,
— Ri53.

FIG. 7. The dependence ofwr on J ——Ri50.5, ---Ri51, –––Ri52,
— -Ri53.

FIG. 8. The dependence ofwa on J ——Ri50.5, ---Ri51, –––Ri52,
—— Ri53.
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ing!. To provide conservation in time of the sum wave mo-
mentum flux in the incident and reflected waves the
amplitudeA and the reflection coefficientR should depend
on time. Alternatively, the source of the wave disturbance
placed into the outer region of the flow should depend on
time according to a certain law. On the other hand, if the
source placed in the outer region of the flow is, for example,
time independent, then the jump of the wave momentum flux
depends on time. This case is discussed below in section VII.

VI. THE CHARACTERISTICS OF THE CL

To find the parametersA andR in ~41!, ~42! the system
~19! for the fields in the CL vicinity should be solved. But
before that the expression~21a! connecting the amplitudes of
the incident, reflected and transmitted waves with the vortic-
ity jump across the CL will be rewritten in terms ofT —the
coefficient of transmission of the wave through the DBL
down to the CL. Taking into account conservation of the
wave momentum flux in the waves down to the CL yields

m2~ uB2
~1!u22uA2

~1!u2!5muT u2. ~43!

And ~21a! together with~43! gives

l~G12G2!5m1uAu2~12uRu2!2muT u2. ~44!

The system~19! was solved numerically using a spectral
model which was described in detail inI . Afterwards all the
characteristics of the flow and waves can be found as func-
tions of the parameters of the flow, namely, the parameter of
nonlinearity l, the Richardson numberRi and the Prandtl
numberPr. The parameterl was determined by the ampli-
tudeA of the incident wave in the outer region of the CL,
because for the simple case of the constant jump of the wave
momentum flux,A depends on time, butA does not@see
~41!#. In this case the inner variables are renormalized in the
following way:

h5
hold

uAu2/3
; w5

wold

uAu4/3
; b5

bold
uAu2/3

,

andl is the following:

l5
l~old!

uAu2
.

Taking that into account enables us to represent the flux
equation~44! in the form

l~G12G2!5m1~12uRu2!2muTru2, ~45!

hereTr5T /uAu. It should be mentioned that there isl(old) in
~44! andl in ~45!.

The dependencies onl of the values appearing in~45!
for a set of Richardson numbers are represented in Figs.
9–13, namely J~l!—in Fig. 9, G1~l!—in Fig. 10,
G2~l!—in Fig. 11, uRu~l!—in Fig. 12 anduTruepm~l!—in
Fig. 13. Besides, the dependence ofwR~l! which is needed
for calculation of the valuesA andR by ~41! and ~42! is
presented in Fig. 14. It should be mentioned that the depen-
dencies in Figs. 9–14 differ from the similar ones fromI ,
which were obtained for the constant Richardson number in
the outer region of the CL down to the CL~because of the

normalization of the vorticity by its value in this region!. In
the present paper each curve in Figs. 9–14 corresponds to the
constant Richardson number in the undisturbed region of the
flow. As in the paperI the simple formula forl~J! which is
valid for small uRu and uTru can be obtained from~45!. It is
as follows:

l5

ARi

G1
2 2

1

4

2J
, ~46!

FIG. 9. The dependence of the jump of the mean vorticity across the CLJ
on l for the following values of the Richardson number: 1.Ri50.5, 2.
Ri51, 3.Ri52, 4.Ri53. Prandtl numberPr50.71. Dashed curves represent
the functionJ~l! calculated by~46!.

FIG. 10. The dependence of the vorticity value above the CLG1 on l for
the following values of the Richardson number: 1.Ri50.5, 2. Ri51, 3.
Ri52, 4.Ri53. Prandtl numberPr50.71.
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whereG1 is determined by~35a!. The dashed curves in fig. 9
correspond to the relation~46!. They are close to the curve
obtained numerically.

VII. THE TIME-DEPENDENT JUMP OF THE WAVE
MOMENTUM FLUX

All the previous results concern the case of a constant
wave momentum flux propagating towards the CL. In this
case, the evolution of the mean fields in the DBL is self-

similar. And the characteristics of the fields~namely, the
mean velocity profile, the law of the CL displacement, the
values of the mean vorticity up and down the CL! in this
region can be obtained easily. In this case the amplitude of
the incident waveA and the reflection coefficientR in the
outer region of the CL are constant in time. But in the outer
region the incident wave amplitudeA and the reflection
coefficientR depend on time@see~41!, ~42!#. On the other
hand, if the source of the wave disturbance is more realistic

FIG. 11. The dependence of the vorticity value below the CLG2 on l for
the following values of the Richardson number: 1.Ri50.5, 2. Ri51, 3.
Ri52, 4.Ri53. Prandtl numberPr50.71.

FIG. 12. The dependence of the absolute value of the reflection coefficient
uRu on l for the following values of the Richardson number: 1.Ri50.5, 2.
Ri51, 3.Ri52, 4.Ri53. Prandtl numberPr50.71.

FIG. 13. The dependence of the normalized value of the transmission coef-
ficient uTruepm on l 1. Ri50.5, 2.Ri51, 3.Ri52, 4.Ri53. Prandtl number
Pr50.71.

FIG. 14. The dependence of the phase of the reflection coefficientwR on l
for the following values of the Richardson number: 1.Ri50.5, 2.Ri51, 3.
Ri52, 4.Ri53. Prandtl numberPr50.71.
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~for example the corrugated surface in the outer region of the
flow! the values of the wave momentum fluxes on both sides
of the CL and the jump of those will depend on time. The
origin of that is as follows. The wave, radiating by the source
in the outer region of the flow, propagates towards the DBL,
partially reflects at the inhomogeneous profile of vorticity in
the DBL and partially transmits. Then the transmitted wave
interacts with the DBL behind the CL. Since the velocity
profile in the DBL depends on time~because it is spreading!
the reflection coefficient depends on time as well. It means
that the momentum flux, which is equal to the sum of fluxes
in the incident and reflected waves, depends on time. In this
case the simple self-similar velocity profile can not be ob-
tained. And the full equation~30! with the boundary condi-
tions ~26!, ~27!, ~29a!, ~29b!, together with the equation~36!
for the wave disturbances in the DBL, should be studied. It is
impossible to find the general solution to the problem, but
the approximate solution can be obtained for the certain situ-
ations.

First, if the Richardson number is not very close to 1/4,
the transmitted wave behind the CL is very small, so the
wave momentum flux in the transmitted wave@T~2`!# can
be neglected and the jump of the wave momentum flux is
approximately equal toT~1`!, andJ5T~1`!/l. Second,
since the time-dependence of the wave momentum flux
arises due to the reflection of the wave from the time-
dependent velocity profile, one can expect that the time-
dependent component of the wave momentum flux is small
when the reflection coefficient is small. As one can see from
Fig. 12 and from comparison of Fig. 5 and Fig. 9, that
uRu,ur u<0.1 for the moderate values of the Richardson num-
ber ~not very close to 1/4! andl.0.2. Then the solution of
the equation can be searched as a series inR.

Consider in this way the flow over a corrugated surface
when the reflection coefficientsR and r ~andR! are small.
The undisturbed velocity profile of the flow in the dimen-
sional variables is as follows:

Ud~zd!5u0zzd .

The corrugated surface placed atzd5zF has the form

zd5zF1h0Ree
ikdxd, ~47!

herekd is the dimensional wave number.
The stream function of this flow outside the DBL is as

follows:

C5
u0zzd

2

2
1ReH C0e

ikdxdF S zdzFD
~1/2!2 im

1R̃S zdzFD
~1/2!1 imG J .

~48!

HereR̃ is the reflection coefficient, the absolute value ofR̃

coincides with that ofR ~42! and the argument is deter-
mined by the normalization condition.

The natural scaling values of this problem~see sec. II!
areL05zF , U05u0zzF , then the dimensionless variables be-
comez5zd/zF , x5xd/zF , k5kdzF , c5C/(u0zzF

2), etc. The
Reynolds numberRe5(u0zzF

2)/n0 . Taking into account this
scaling and the expression~48! for C and neglecting the
transmitted wave forRi>1 gives the following expression

for the jump of the wave momentum flux, expressed by the
dimensional parameters of the flow and the surface:

J5
kdmuC0u2~12uRu2!

2n0u0zzF
. ~49!

In the zeroth order inR it follows from ~47! and ~48!
thatC05u0zzFh0 and ~49! gives

J~0!5
1

2n0
kdmu0zzFh0

2.

The jump of the wave momentum fluxJ~0! is constant and
the velocity profile in the DBL and all the characteristics of
the flow in the zeroth order can be obtained from Figs. 1–14
by Ri andJ~0!, namelys(0),l (0),G6

(0) ,R(0),r (0),a(0). The in-
dex ~0! is omitted below. Then the reflection coefficient of the
wave in the outer region of the flow is

R5n2imeiwr~ ur u1Re2 i ~2wa1wr !n22im1!. ~50!

It obviously follows from ~50! thatR depends on time as
the sum of two cos~log t!, wheren is related tot by ~16!.
Calculating all the parameters in the zeroth order inR
enables to find the first order term ofJ. Comparing~47!
and ~48! gives in the first order inR, that C05u0zzFh0
~12R̃! Taking into account R̃5Re22im ln D @where
D5(h0/ZF)

2/3(m1/m)
1/3# and the normalizing conditions

gives

J5
1

2n0
kdmu0zh0

2zF@122Re~r 1n
2im11r 2n

2im2!#.

Here r 15ur uei (wr22m ln D), r 25uRuei (wa22m ln D), m15m,
m25m2m1 . So the jump of the wave momentum flux across
the CL is the sum of the constant component and the term,
oscillating in time as the sum of two cos~log t!.

The mean vorticityx can be searched in the similar way,
namely as a sum of the mean and oscillating terms,

x5x0~H !22Re~x1~H !n2im11x2~H !n2im2!. ~51!

The parameters~t! in the law of the CL displacement~15!
can be determined in the same way:

s5s~0!22Re~s1n
2im11s2n

2im2!.

Thenx1 andx2 obey the following equations:

]2x1.2

]H2 12SH1
s~0!

2 D ]x1.2

]H
14im1,2

5C6e
2@H1~s~0!/2!#2s1,2~122im1,2!; ~52!

hereC6 are given by the formula~34!. The solution to the
equation~52! has the following form:

x1,2~H !5FC6

2
s1,22B6

~1,2!D2112im1,2

3S 6SH1
s~0!

2 D& D Ge2@H1~s~0!/2!#2. ~53!

HereD2112im1,2
(Q) is the solution to the Weber equation,

d2Dn

dQ2 1S n1
1

2
2
Q2

4 DDn50,
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vanishing forQ→`.
The expressions for the mean velocityV1,2(H) vanishing

for H→`, which correspond to~53! are the following:

V1,25
s1,2
2

1
C6

2
s1,2E

6`

H1~s~0!/2!
e2H1

2
dH1

1B6
~1,2!E

6`

H1~s~0!/2!
D2112im1,2

~6H1& !e2H1
2
dH1 .

The valuess1,2,B6
(1,2) are determined by the boundary con-

ditions:

x1,2~10!2x1,2~20!5J~0!r 1,2,
~54!

V1,2~60!50.

Two systems of three equations for determining two sets of
three complex valuess1 ,B6

(1) ands2 ,B6 (2) follow from the
boundary conditions~54!. It obviously follows from~51! that
the values of vorticity on both sides of the CL~G6! can be
represented as the sum of the constant~G6

~0!! and the oscillat-
ing components with the amplitudes~G6

~1,2!!:

G65G6
~0!22Re~G6

~1!
•n2im1G6

~2!n2i ~m2m1!!.

The complex valuess1,2, G6
~1,2! are functions of two

parameters—J~0!, Ri ~or l~0!, Ri taking into account the de-
pendenceJ~0!~l~0!! presented in Fig. 9!. The example of de-
pendenceG6

~1,2!~J~0!! is shown in Figs. 15a,b forRi52. The
linear approximation inR is obviously valid forJ~0!,1.5 or
as it follows from Fig. 9 forl.0.2.

VIII. CONCLUSION

In the present paper a stratified shear flow over a corru-
gated surface is considered. The velocity of the flow changes
its direction at some levelz0 over the surface. Then the criti-
cal layer~CL! is formed in the vicinity of this level, where
the flow velocity coincides with the phase velocity of the lee
waves~which is equal to zero in this problem!. The corru-
gated surface is supposed to have the simple sinusoidal
shape, i.e. the elevation of the surface is

h5h0 coskdxd

~x is the horizontal coordinate!. If the amplitudeh0 is small
enough, that the parameter«5h0/z0!1, and the Reynolds
numberRe5U0/(n0k) is large enough, then the linear invis-
cid approximation can be used for wave far from the CL.
And the complex amplitudec(z) of the stream function dis-
turbance obeys the Taylor–Goldstein equation with singu-
larities in the CL. Soc(z) have the algebraic branch points
in the CL. For example, for the wave propagating towards
the CL,

c5~zd2z0!
~1/2!2 im, ~55!

wherem 5 ARi21/4.
To remove singularities some additional factors should

be taken into account: viscosity, nonlinearity and
nonstationarity.13–15 In the present paper we concentrate on
the combined effect of nonlinearity and dissipation in the
stationary CL forming after the large time from the begin-
ning of the process of wave–flow interaction. The main

properties of this kind of the CL in the strongly stratified
shear flows are obtained inI . The brief description of them is
given below.

The jump of mean vorticity~Fig. 16a! or ‘‘bending’’
of the velocity profile ~Fig. 16b! appears across the CL.
When Ri.1/4 the jump appears in the 0-th order of«.
The width of the jump is equal to the width of the CL~pro-
portional to «2/3!. The value of the vorticity at the side
of incident wave (dUd/dzdu1) is larger than that at the
other side (dUd/dzdu2), and the more the amplitude of
the incident wave the larger the vorticity jump
(dUd/dzdu12dUd/dzdu2). The jump of vorticity is deter-

FIG. 15. ~a! Complex amplitudes of the oscillating components of the mean
vorticity up to the CL—G1

~1,2! , Ri52. 1. Re~G1
~1!!, 2. Im~G1

~1!!, 3. Re~G1
~2!!, 4.

Im~G1
~2!!. The dashed curve isG1

~0!~J!. ~b! Complex amplitudes of the oscil-
lating components of the mean vorticity down to the CL—G2

~1,2! , Ri52. 1.
Re~G2

~1!!, 2. Im~G2
~1!!, 3. Re~G2

~2!!, 4. Im~G2
~2!!. The dashed curve isG2

~0!~J!.
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mined by the jump of the wave momentum flux at the both
sides of the CL. In the dimensional form the relating expres-
sion is as follows:

n0S dUd

dzd
U

1

2
dUd

dzd
U

2

D 5^ud;wd;&u12^ud;wd;&u2 , ~56!

wheren0 is the viscosity coefficient,ud; , wd; wave distur-
bances of the horizontal and vertical velocities, and^•••&
means averaging over the wave disturbances. In the dimen-
sionless form this expression is given by~21a!. It reflects the
fact that in the stationary CL the radiation force is equal to
the viscous force. Another property of the dissipation non-
linear CL is the reflected wave. The well known fact is, that
the wave of infinitesimal amplitude does not reflect from
stratified shear flow with the homogeneous basic vorticity
profile @see~55!#. Alternatively the wave of small but finite
amplitude reflects from the inhomogeneous profile of the
mean vorticity with the jump across the CL. The jump of
vorticity and the complex reflection coefficient are the func-
tions of the parameters of the flow in the CL are the follow-
ing: the Richardson numberRi—and the nonlinearity param-
eterl51/~«2Re! ~l is the inverse inner Reynolds number of
the flow in the CL vicinity!.

The jump of vorticity~or ‘‘bending’’ of the velocity pro-
file! in the CL vicinity means that the deformation of the
initial velocity profile grows with the distance from the CL.
The question arises, how this velocity profile can be realized.
The same question concerning the flow velocity deformation
arose in the works by Haberman.1,2 The other question is as
follows. If the initial velocity profile, the stratification and
the amplitude of the incident wave are known, what the val-
ues of the vorticity at the both sides of the CL after the
process of relaxation will be. To answer these questions the
initial problem of the internal wave propagation towards the
CL in the stratified shear flow is solving. The average hori-
zontal velocityu0 obeys the diffusion equation~9!, which
demonstrates that the average acceleration of the fluid par-
ticle is determined by the friction force and the radiation
force. The equation is accompanied by the boundary and the
initial conditions of the absence of disturbances of the veloc-

ity profile in the starting moment and at infinity. The average
density obeys the similar equation and the boundary and ini-
tial conditions.

The evolution of the flow after large time from the be-
ginning of the process in comparison with the diffusion
time at the scale of the CL~13! is determined by the quali-
tative properties of the equation~9!. At that time the flow
in the vicinity of the CL is quasi-stationary. Since the dif-
fusion is decelerating process the CL becomes ‘‘more
stationary’’ with time. The jump of vorticity determined by
~56! appears like in the stationary CL. The value of the
vorticity determined at the side of the wave incident is larger
than the undisturbed one, at the other side it is smaller than
undisturbed one. CL appears to be the kind of source of
the mean vorticity and the diffusion of vorticity from the
CL occurs due to viscosity, so the transitional region from
the CL to the undisturbed region is forming~Fig. 17!. This
region is called the diffusion boundary layer~DBL!. Its
scale is the diffusion lengthAlt, i.e. it grows in time. The
CL is the point at the velocity profile, where the flow veloc-
ity is constant and equal to the phase velocity of the wave.
In this point, there is the break at the velocity profile@the
scale of the break~d! is finite but small in comparison
with the diffusion length according to~13!#. This profile can
be realized only if the CL is moving towards the incident
wave ~see Fig. 4!. The similar deformation of the stratified
shear flow due to nonlinear interaction with internal waves
was obtained by Fritts9 in numerical experiments. Some
similar deformation of the mean flow can be seen on the
photos of the laboratory experiments,19,20 but these effects
were not discussed in those papers. So for the constant jump
of wave momentum flux we answered the questions for-
mulated above, how the broken velocity profile can be real-
ized and what the values of vorticity at the both sides of the
CL are.

Now we return to the problem of interaction of the lee
waves radiated from the corrugated surface and the stratified
shear flow, formulated above. Suppose that the corrugated
surface is placed to the undisturbed region of the stationary
stratified shear flow, where the velocity profile is linear~Fig.
18!. Is the jump of the wave momentum flux~and vorticity!
constant? In general the wave flow interaction is the follow-
ing. The wave, radiating by the surface propagates towards
the DBL; partially reflects, partially transmits. Then the
transmitted wave interacts with the CL: partially reflects, ab-

FIG. 16. The forms of the mean profiles of vorticity~a! and vorticity~b! in
the vicinity of the CL.

FIG. 17. The form of the mean vorticity profile in CL and DBL.
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sorbs and transmits. Then the transmitted wave interacts with
the DBL behind the CL. The velocity profile in the DBL
depends on time, because the DBL is spreading and moving.
So the reflection coefficient depends on time as well. It
means that the wave momentum flux, which is equal to the
sum of fluxes in the incident and reflected waves, depends on
time. In this case the simple self-similar velocity profile can
not be obtained, but it can be found approximately for a
rather wide range of parameters.

First, if the Richardson number is not very close to 1/4,
then the transmitted wave behind the CL is very small. So
the wave momentum fluxT2 in the transmitted wave can
be neglected and the jump of the wave momentum flux is
approximately equal toT1 , and J5T1/l. Second, since
the time-dependence of the wave momentum flux arises due
to reflection of the wave from the time-dependent velocity
profile, one can expect that the time-dependent component
of the wave momentum flux is small, when the reflection
coefficient is small. The numerical estimations show, that
when Ri.1 and l.0.2, the reflection coefficientR,0.1.
In this case the solution to the equation can be sought as
a series inR. The paradoxical fact is obtained. The de-
formations of initially constant stratified shear flow over a
corrugated surface of constant shape are time-dependent. If
the reflection coefficient is not small, all above values are
time-dependent as well, but analytical investigation is impos-
sible.
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