Quasi-steady dissipative nonlinear critical layer in a stratified shear flow

Yu. I. Troitskaya and S. N. Reznik
Institute of Applied Physics, Russian Academy of Sciences, Nizhniy Novgorod, Russia

(Received 16 November 1995; accepted 8 July 1996

When a wave with small but finite amplitudepropagates towards the CL, where the effects of
nonlinearity and dissipation are essential, the jump of mean vorticity over the CL appears. For the
dynamically stable stratified shear flow with the gradient Richardson nuRibet/4 the jump of
vorticity has the same order as the undisturbed[dn€luid Mech233 25(1991)]. The process of
formation of the flow with this substantial jump of vorticifgr “break’” of the velocity profile in

the CL is studied at large time after beginning of the process. The transition region between the CL
and the undisturbed flow, the dissipation boundary |41 ), is shown to be formed. Its thickness
grows in time proportional tq't (t being tim@, and the CL moves towards the incident wave. When
the jump of the wave momentum flux over the CL is constant in time, the flow characteristics can
be found in the most simple way. The velocity profile in the DBL appears to be self-similar, the
displacement of the CL is proportional t& and the values of vorticity at the both sides of the CL

do not depend on time and they are determined only by the constant wave momentum flux. It is
shown that, to provide the constant jump of the wave momentum flux the amplitude of the wave
radiated by the source in the undisturbed flow region should vary in a certain complicated manner,
because it reflects from the time-dependdmbadening velocity profile in the DBL. On the other
hand, the wave momentum flux from the steady sodimeexample, the corrugated waldepends

on time. When the coefficients of reflection from the GR) (and from the DBL () are small, this
dependence is weak and the wave and flow parameters depending on time are found asReries in
andr. The wave—flow interaction for this case is studied. 1896 American Institute of Physics.
[S1070-663(196)01011-3

I. INTRODUCTION the B-plané AT is of order s For the algebraic branch
point in the stratified shear flow the value &f" is of unity
The investigation of singular wavelike disturbances oforder forRi>1/4 (1).
small amplitudes superimposed on shear flows leads to the  The mean velocity disturbance related to the vorti¢ity
problem of removing singularities in equations for the dis-grows to infinity with the distance from the CL. To limit this
turbances. The singularities occur at the critical pOintS,growth one must come out of the framework of the steady
where the phase velocity of the perturbation coincides withapproximation and take into account time evolution as it was
the flow velocity. One of the approaches to solving the probsupposed in the works by Masloe.For example, the un-
lem is taking into account dissipation and nonlinearity in thesteady process of vorticity diffusion from the CL due to vis-
critical layer (CL)—the small vicinity around the critical cosity leads to arising of diffusion layers, where the mean
point. It corresponds to the result of evolution of the flow atfiow distortion drops with the distance from the CL. This
large time. This approach was employed in the works byapproach was employed for the Rossby wave’@then the
Habermaf? for homogeneous and slightly stratified shearmean flow distortion is the small value of ordel2 The
flows and in the paper by Troitskayéor the flow with the  similar diffusion layers was obtainé® in the weak-
gradient Richardson numbRi>1/4. The last work further is nonlinear approximation for the stratified shear flow with the
combined effect of nonlinearity and dissipation leads to demean velocity profile and the jump of vorticity are not large.
formation of the mean velocity profile, namely a jump of the | the present work, the stratified shear flow wWRh>1/4 is
mean vorticity across the CL arises, i.e. faj— the vor-  considered, when the vorticity jump has the same order as

ticity averaged over the wave period, the vorticity of the undisturbed flow. It leads to some specific
properties of the flow in the diffusion layers in comparison

(@) AT with the homogeneous flow and the stratified flow wRlin
Q_o: 1+T+ > sign(z—z;) |, (1) ~1/4. In particular, in the process of the unsteady deforma-

tion of the velocity profile, the CL is moving towards the
incident wave proportionally tq/t (wheret is the time from
denotingQ), the undisturbed vorticityz the vertical coordi- the start of the procegssThe similar displacement of the CL
nate, z, the CL coordinateAl is the normalized vorticity ~was obtained in the numerical experimént.

jump, ' is a constant discussed below. The valueAdf It should be taken into account that the vorticity jump
appears to be larger in order than the disturbance of arder AI" in (1) can be obtained within the steady approximation,
causing it. For the logarithmic singularity in the wavelike but the quantityl” is the arbitrary constant of the stationary
disturbance of a homogeneous floand the Rossby wave on problem, i.e. in the steady approximation one can find only
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the difference(I", —I'_), but not the values of vorticity on Py Py
both  sides of the CL (I',=1+I'+Al/2 and =2 Tz
I'_=1+I'—-AI'/2). I' . andI'_ can be obtained only within

the unsteady problem and the result depends on the boundafére, x and z are nondimensional horizontal and vertical
conditions in the outer region of the CL. In the present work,coordinates normalized on the scale of the mean figyt is
'y andI'_ are found for the unbounded shear flow, whenpondimensional time normalized by the characteristic scale
disturbances decrease at infinity. It should be mentioned thajf the mean flowL/U,; U, is the characteristic velocity of
for the Rossby waves on the zonal shear flow wiéhis  the mean flow;y is the nondimensional stream function
small valu6e of ordege™“, the solution to the |n|t|ql problem gc¢gled byLoU,; w is the dimensionless vorticity scaled by
givesI'=0"andI', =1*AI'/2. In the present cadeis shown /L, p is the nondimensional density, normalized by its
to be not equal to zero. _ character valugg,;, Re=UyL,/ v, is the Reynolds number

In section I, the main equations for the problem aredefined in terms of the parameters of the mean flow;
formulated. The qualitative properties of the flow in the CL pr=,/y, is the Prandtl numben, », are the viscosity and
vicinity and the basic approximations are discussed in seghe thermoconductivity coefficientsy’ =gL/U3 is the di-
tion Ill. In section IV the process of diffusion of the mean mensionless gravity.
vorticity from the. steady source posgd in the CL i; studied. Suppose that the harmonic wave of small amplitude ra-
The wave—flow interaction is investigated in section V. Indjated by an external source propagates towards the basic
section VI the numerical model employed for the investiga-flow described above and the phase speed of the wave coin-
tion of the CL is briefly described and the dependence of theijges with the flow velocity at some level. Then CL is
CL parameters on the inverse inner Reynolds number in theyrmed in the vicinity of this level, where strong wave—flow
CL is presented. They are similar to the results obtaindd in jnteraction takes place. It is accompanied with slow variation
Finally, the example of deformation of the mean velocityin time of the mean flow and the wave amplitude and gen-
profile due to interaction with the waves generated by theration of the high harmonics of the basic disturbance. Then

stratified shear flow over a corrugated surface is considereghe solution to the systerf2) can be searched as follows:
in section VII.

z “ .
Il. THE BASIC EQUATIONS ¢=j U(z,t)dz+szl Rey;(z,t)e s,
]=

Consider the stratified shear flow with the undisturbed
velocity and density vertical profileg,(z,) and py(z,), re- wheres=x—ct, c is the dimensionless phase velocity of the
spectively (z4 being the dimensional vertical coordinate wave,k is the dimensionless wave number scaled iy It
Suppose that the gradient Richardson number, equal tshould be emphasized that both the wave field amplitude and
N2/(dVy/dzg)?>1/4 everywhere in the flow[where the mean velocity profile can depend on time.
N2=—(g/po)(dpy/dzy) is the buoyancy frequengyCon- The nonlinear syster?) can be linearized relative to the
sider the problem of wave propagation towards this flow.mean flow if the disturbance amplitudeis small. Neglect-
Suppose that the flow velocity coincides with the phaseng the dissipation and time dependence of the wave ampli-
speed of the wave at some level. In the vicinity of this leveltude gives the Taylor—Goldstein equation for the complex
the critical layer(CL) is formed, where strong wave—flow amplitude of the basic disturbance of the stream funcfipn
interaction takes place. In the process of the wave—flow in-
teraction two stages can be specified. Flow evolution at the dz‘/’l_ d*u/dz ((NLo/Uo)2
beginning stage depends on the amplitude and the shape of dz° U-c "1 (U—c)?
the front of the incident wave. If the amplitude is large and
the front is sharp enough then the complicated nonlineafhe density disturbance, is expressed by, in the follow-
transition process takes pladkigh harmonic generation, ing way:
wave induced instability, etc. This process can be studied
only in the framework of the numerical modéfst* After _ (NLo/Up)?
relaxation of the transition process due to viscosity the quasi- P1= U-c 1
steady flow is established and the time evolution is deter-
mined by the slow diffusion process. In this case the flow inEquations(3) and (4) have the singularity pointg., where
the CL vicinity is almost steady, and its dynamics is deter-U(zc) =c (z. is the critical leve). It means that the approxi-
mined by balance of nonlinearity and dissipation. Within themation neglecting dissipation, nonlinearity and time depen-

Boussinesq approximation, the nondimensional equations f¢tence is invalid in the CL-vicinity and these factors should
the vorticity and density are as follows: be taken into account here. The regions where they are es-

sential are called nonlinear, viscous and nonstationary CL,
respectively. The scales of the CL are as folld#s>

kz) #1=0. €)

4

— e _+_
9% X2

aw+awa<// dw dp g dp 1 [Pew Po
gt X 9z Jz Ix podx Re :

Syis=(ReUk) M 5,=2%3
gt 9x dz 9z dx RePr\dgz?  ox?)’ | dul ot|
and (i oo
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The nonlinear effects in the CL are investigated below, gy, X0 1 &% (2w
so the transformation from the dimensionless variables a7 07—772= T on 07—772 fo ¢,edE, (7)
z,X,t, ¢, w,p to the intrinsic variables of the nonlinear CL is
made: by N 9%y 1 9 (2=
n=2/e??is the “inner” vertical coordinate, 9r Prang? 2man Jo bede,
=kte?3Q), is the “inner” time, ®)
Qg is the dimensionless vorticity value far from the CL, @y
&=ks is the normalized intrinsic horizontal coordinate, X0~ an? "
o=(y—c2)le*30, is the inner stream function,
x=wlQ, is the normalized vorticity, Integrating(7) with respect ton gives the equation for the
b=(p—1)/(¢¥3(—dpy/d2)) is the “inner” density, mean horizontal velocity,
heredpy/dz is the characteristic dimensionless density gra- 4y, 7%y 1 9 (2=
dient of the basic flow far from the CL. AN o= ¢ dE. 9
) . ; orT an 2w dn Jo
In the inner variables the systefB) is as follows:
ax ox de dx d¢ b Px  Px The source in the diffusion equatiof®) is the radiation
4+ L —— L ——Ri—=\—5+—-—5a? forc
A T PR TRANT: x<an2 aé“)' oree.
db dbop dbdp N (b b F _aT
—t == | Tt = o, (6) rad n’
dr  d€Edn dIn d€E Pr\dn° 9
P P where
X= 3+ a,
an o0& 1 wa de 10
. . . .. =T 5= ©yP
where \=(kRee?Q) 1 is the nonlinearity parameteRi is 2m Jo T7TE

characteristic value of the Richardson number of the basic . . .
flow far from the CL. It obviously follows from(6) anda is Is the vertical flux of the horizontal momentuitihe radiation

the inverse value of the Reynolds number in the CL define(é“’.treSS or the Reynolds strgsa simple phy;ical interpr'eta-
in terms of the vertical coordinate. Takir{§) into account |on.of thef: eqﬁau%mQ) cqnl be propos:(ajd. Itis ﬂ;‘e edquatlgn of
givesh = B,/ 0n)°. Herea=ksis the ratio of the noniin- L5 1 % T BA0 8 S00EE TV etermined by &
ear CL scale to the horizontal wavelength. Further, the wav8<hoc, . 9 y the
amplitudee is supposed to be small enough,s€1, and the radiation and viscous for_ce_s. The form Of. the equa(B)rf(_)r
ferms 715 (ahre! -] can e negecte con- (19 VETSGE Sty = Smir 0. Ston® e o
sidering flows in the vicinity of the CL with the characteris- .~ .
tic scale of orders,, (5). But far from the CL the vertical rivative of the vertical mass flux,
scale of the disturbances increases and these terms can be- 1 (2«
come essential. B=—o_ . be.d¢. (11)
The investigation of the evolution of the flow in the CL
vicinity will be made within the syster(6). Since the distur- |t obviously follows from (8) that variation of the average
bance is supposed to be periodically varying in the coordidensity at some level is determined by the “flowing into and
nate §, the hydrodynamic fields can be represented as thgut” mass fluxes and by diffusion of the density.
sum of two components, namely, one that is averaged over To complete the formulation of the problem, the initial
the disturbance period and one thatidependentperiodic  and boundary conditions for the partial differential equations
in spacg, i.e. (7), (8), (9) should be given. At the initial moment the ve-
o= 0ol 1,7+ @' (17,,7), locity and density profiles are supposed to be linear, i.e.

b:bo(ﬂ17)+b’(77,§,7'), Up=7; b0:_77

XZXO(an)+X,(77!§!T)' P . . .
. At infinity (— =) the distortions of the average profiles
Far from the CL,¢,, bo, xo tend to undisturbed values .o supposed to vanish—

and¢’, b’, x¥' have the sense of the wave disturbance. First,

consider the evolution of the average fields.
Ug(— £, 7)=1,

(12
Il. THE QUALITATIVE PROPERTIES OF THE FLOW IN bo(7— +0,7)=—7
THE CL VICINITY. THE BASIC APPROXIMATIONS 0 - '
The equations for the average vorticjgy and densityo, First, consider qualitatively the evolution of the average

fields can be obtained by averaging of the first and seconflow at large time using the qualitative properties of the
equations of the systeii6) over the period of disturbances. equation(9). Suppose that the time variation of the flow in
The transformation gives the CL vicinity is determined only by the diffusion process.
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This supposition is correct, because the flow is stafl®.  velocity of the wave. At this point, there is the “break” of
processes more rapid than diffusion are discussed below. the velocity profile[ The scale of this brea&is nonzero, but
this case the CL becomes quasi-stationary at a sufficientlgmall in comparison with the diffusion lengtfx 7 according
large time period, more exactly large in comparison with theto (13).] This profile can be realized only if the CL is moving

diffusion time at the scale of the CL: in the positive direction ofy, i.e. towards the incident wave
momentum flux. The similar displacement was obtained in

5 the numerical experimeRtAlthough the law of motion of
Lt N (13 CL was more complicated, namely, acceleration occurred at

the beginning and deceleration later, that behavior took place

The scale of the quasi-stationary CL is determined by thdecause the beginning stage of the wave—flow interaction in
viscosity or nonlinearity, it is of ordex in the first case the CL was studied, when the time from the start of the

and of order 1 in the second case, i.e. process was less than the time of diffusion at the scale of the
CL (see Ref. @ It should be mentioned that according to the
s=max\ 3 1}. (14)  review article by Stewartsdhthere is only one mesh point

on the CL in these calculations. But the width of the nonlin-
Expression(13) is the necessargbut not sufficient condi-  ear and viscous CL was about 20 m and the grid stem3
tion of quasi-stationarity of the CL. The conditions of quasi- Our control calculations show that the computation error is
stationarity are discussed below in detail. rather small for this relation between the grid step and the

Since diffusion is a decelerating process, the CL be-CL scale.

comes more “stationary” with time. The wave momentum Now we will obtain quantitatively these qualitative prop-
flux is known to be constant in the quasi-stationary waveserties. In general the law of the CL motion can be presented
This means tha#T/d»#0 only in the CL-vicinity of widths, as follows:
i.e. only here the radiation force differs from zero. In the
quasi-stationary CL the radiation force should be balanced 5=g(7) \/ﬁ- (15)
by the viscous force, so the jump of vorticity across the CL
appears as in the stationary Gkeel). Suppose that the heres(7) is an unknown function to be determined.

wave propagates towards the CL in the negative direction of  |n the vicinity of the moving CL the natural coordinate is
the vertical axes like in. Then the direction of the radiation the “intrinsic” one,

force in the CL vicinity determines that in the regiop-0
the value of the mean vorticity is greater than the undis- = n—s(7) N

turbed one and in the region<O0 it is less than the undis-

turbed one. And there is no disturbance of vorticity far from cqnsigering diffusion processes, it is convenient to use the
the CL (for n— =) [see(12)]. Diffusion of vorticity from quantity
the CL occurs due to viscosity. So the transition region from

the CL to the undisturbed flow is forming. Further, it is

called the diffusion boundary layéDBL). It obviously fol- = 1 , (16)
lows from the equatior(9) that the scale of the diffusion 2\/)\—7
spreading of the flow in DBL is the diffusion lengti 7,
i.e. it grows in time. i.e. the inverse diffusion length instead of time.
The critical level is the point at the velocity profile, The hydrodynamic equation(§) in the variablesh, &, v

where the flow velocity is constant and equal to the phaséinstead ofy, & 7) are expressed in the following way:

1 LI I
- R - . 2 Py
ax 5 9x ,ds\ dxdp dx dp ab X X ,
— —— —_—— —_ —_— —_— e e —— { —— .+.
L 8h(MV MW e e R Mt e )

1 IAI 1
—— - ‘ ~
zxab , b \ )\zds +aba¢ b dp N &2b+¢92b )
v U T \ MV Gy T3 Gh h o€ Pr\on?  a& ¢
2 2
(9 (o4 (9 [ea 2' (17)
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At large time periods wher(13) is valid there are two X0 9@ 99 §p© 9b©@ 92x0
strongly different scales, defined by(14), and 1b [v is d€  oh dh g —Ri g€ =\ sh?
defined by(16)] in the system(17), so it can be solved by the

method of matched asymptotic expansions in the small pa- gb© 9@ 5b® 9@ N 52b®

rameterdy equal to the relation of the CL width to the dif- 9€ oh oh 9E _ Pr onZ’ (19
fusion scale at large time period. Becausis of order unity

within a wide range of the parametar the expansion is © P pl®

made in the parameter. STV

The system19) was considered already In
For |h|>é (but|h| < \7), the profiles of vorticity and
the Brunt—Visaa frequency averaged over a period of dis-
The zeroth order inv corresponds to the quasi-stationary turbances are constant. Then the wave disturbances can be
approximation when all the terms containingproducts can easily found from the Taylor—Goldstein equation by the
be omitted. The systerfl7) enables us to obtain some addi- Frobenius method. As a result, the asymptotic solution of
tional limitations on using of the quasistationary approxima-(19) for § <| h| < A ris as follows:
tion in the CL vicinity. This approximation is valid if the

A. Inner solution

2 [

terms | and Il are small in comparison with Il and the right (0)_ + (M) [ | L/2F i
hand sidegRH). Namely ¢= =hc.+ 2 +n:1 Re([A%"|h|

I<lll, AA<h, 71, (183 +B|h[ 12 m=]einé), (203

2 e
I<RH, N#<Mh?,  7>h?/), (18b) b@>=ﬁ+_|\|§h;';'_f S Re[AM|h|~ M2 ine
+ E L& *
ll<lll, \sw/h<h, N7>\s/h?, (189 B~V e Jgingy (20b)
I<RH, Aswv/h<\/h?, 7>h?/\s? (189  whereu. = JRITZ—1/4.
The following expression for the values of the jump of

The inequalitieg18) are written in both variables and . the vorticity (I', —I"_) across the CL can be found aslin

Let us discuss the sense of inequalitid®). First, it N, =T _)=T(+0)—T(—2). (213

should be taken into account that the terms | describe time
evolution in the frame of reference moving according toUsing (20) it can be easily obtained froifi0), that
(15), and the terms Il describe the influence of variable bulk
motion. The characteristic time scale of the terms #,iand
the time scale of the terms Il is the time of the CL displace-
ment from the pointy to the pointn+h, which is approxi- _ ) _ _
mately equal tdw\/;/s\/f [see(15)]. The terms IIl describe The jump of the density gradient across CL is absent, and
inertial motion with the characteristic time scald Hnd the N2=N2=1. (21b)
right hand (RH) describes the diffusion at the distanbe * -
which has the characteristic tiné/\. The inequalitieg18a) Here the problem of harmonic wave propagation to-
and(18b) mean that the characteristic time after beginning ofwards the CL is studied, 5@9&0. The amplitudes of other
the processr is large in comparison with the characteristic harmonics can be found from the solution of the(d&) (see
inertia time and the time of diffusion at the distance of orderSec. V). It should be mentioned, however, as was demon-
h. The inequalitieg18c) and(18d) mean that the character- strated inl, for moderate Richardson numbers the amplitudes
istic time of the CL displacement at the distaricis large in -~ of high harmonics were very small in comparison with the
comparison with the characteristic times of inertia and diffu-amplitude of the fundamental harmonic foi>é. So further
sion at the distancé. Since translation of the CL is the they will be neglected in this region. Note that the similar
decelerated motion, it does not influence the flow in the Clproperty of high harmonics to be small in comparison with
vicinity at sufficiently large time. The opposite case wasthe fundamental one was demonstrated in other different
studied by Haynes and Cowfywhen the uniform motion kinds of flows with CL. So Smith and Bodoryishow the

of the inviscid CL for the Rossby wave dramatically changesinsignificant role of high harmonics for homogeneous flow

T(roo>=uin§l (|AD12—B[?).

its inner flow. with the logarithmic singularity in the CL. For the margin-
If the inequalities(18) are valid the solution of the sys- ally stable stratified shear flow with the algebraic branch
tem (17) can be expressed as a serieg’;in point in the CL calculation carried out by Churilov and
Shukhmaf revealed that the contribution of the second har-
(x,b,0)=(x?,b©@ o)+ p(y ¥ D eD)... monic to the Landau constant in the Landau—Stewart equa-

tion was 5 times smaller than the contribution of the mean
In the zeroth order of approximation in the system(17) is  flow, i.e. the nonlinear effect was determined mainly by the
as follows: interaction of the fundamental harmonic and the mean flow.
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B. Outer solution

Consider now the region of the diffusion boundary layer,

whereh™ /A7 i.e., the conditiong18b) and (18d) are not
valid. The outer vertical variablel = vh is natural for this
region. The inner solutio20g and (20b) expressed in the
variableH has the following form:

I.H2
(0)_ =
(P+ V 2 VHCi
+V3/22 Rd[A(_P)|H|(1/2)+iﬂ:V*iM:
n=1 -
+BU|H|W2 i ey | (228
(0) 1 2
bi =; —NiH‘i‘Vﬁi
N2 &
32 (V2 +ipe,—ipe
T HZ Re([A"[H|~
BIV|H|~(W2-ins ylus]ging) | (22b)

The outer variables of the DBL follow fror22):

b= Vch(o)
B=1b®,
ﬂ(P(O)
V=vu9=yp o
(92@(0)

X=xO=—r.

(®,B8,X)=(Po(H,»),Bo(H,v),Xo(H,v))
+ Vs/z(q)l(H’V)’Bl(Hav)axl(va))eig'
The solutions both for the averaged fields and for the distur-
bances should be posed as a series. ihhe linear approxi-
mation is valid and diffusion and time-dependence can be

neglected for the disturbances of the fields in the zeroth order
in v. The system for disturbances is as follows:

Do Xy~ D1 Xou—RiB1=0,
Do B1—P1Bon=0,

a2
2 (Dl

(23
X1=Prput+

For the averaged fields diffusion and time-dependence
should be taken into accoufit is quite natural at the diffu-
sion scale The system of equations for the averaged fields
in the lowest order irv is as follows:

32x0+2 axo+2 S vds| dXo 1 8T 04
JHZ "V o 2" 2dv H _womz 24
(92,80 ﬁo S 14 dS (7,30 PI’ (98
aHZ T2y ARt s g aR 2Pty e
(24b
D,
U (249

HereT andB are the wave fluxes of momentum and mass,
defined by the formul&l0), (11), respectively. In the quasi-
stationary approximatioft andB do not depend on the ver-
tical coordinate everywhere out of the sméicinity of the

CL [it follows from the system$19) and(23)]. This scale in
the variableH is equal tov6<1. This means that in the

The equation$17) are expressed in the outer variables in thezeroth order inv there are delta-functions in the right hand of

following way:
X b X 9d 9B

€ H oH ¢ R'a_g

Ht2 2@

_\ (92X+2 X s s wvds| aX
=\’ IH? ™ v oH
+a2c92X
T
B od I oD
9E OH  oH 9&
A 9B B
“Br (m“”

’

s v ds) B

2(“5‘55

SRz 2

the equationg24a and (24b), that are equivalent to defini-
tion of the boundary conditions on the CL.

The boundary condition on the CL for the outer solution
can be obtained by matching outer and inner solutions on the
CL. For the mean vorticityX, and velocityVy=d®y/dH it
follows from (223, that

Xo(H,v)=T., for HZO, (253

Vo(H,»)=T.H+vc., for HZO. (25b)
Taking (219 into account yields

Xo(+0,0)=Xo(=0) =T —T_=E(v), (26)

where E=(T(4+2)—T(—=))/\ is the normalized jump of
the wave momentum flux across the CL.

The second and the third boundary conditions,

VO( + O,V) = 0;

Vo(—02)=0, @7

follow from (25b) in the zeroth order irv. The conditions

The fields®, 8 and X can be presented as a sum of the(27) point out that in the 0-th order iné the velocity of the
averaged components and talependent disturbances in flow in the CL is equal to zero in the frame of reference

the following way[see(22)]:

3318 Phys. Fluids, Vol. 8, No. 12, December 1996
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The boundary condition on the CL for the density gradi-

ent can be obtained frorfR1b) similar to (26). Since the

N »

Vo(H)=H+

vertical mass flux in internal waves is equal to zero outside

the CL, the boundary condition is as follows:

dBo dBo

a_H(_l—O'V):o'?_H(_O'V)' (28)

Taking into accoun¢12) and the relation of;to H gives

the boundary conditions for the velocity, vorticity and den-

sity at infinity in the following form:

Vo(ioo,v)ZHJr;, (293

Xo(£o,v)=1, (29b)
s

Bo(£®,v)=— H+§ - (290

It should be mentioned thd29¢) obeys the equatiofR4b)
and the boundary conditiof28), i.e. it is valid for everyH.

In the zeroth order inv the source in the equatid24a
should be put equal to zero fét>0 andH <0, i.e. it takes
the form

9*Xo IXo

W‘FZVW‘FZ H+ 0. (30

s vds Xo
2 2dv] oH

The equation(30) with the boundary condition&6), (27),

(293, (29b) enables us to study the evolution of the flow in
the diffusion boundary layer at large time for an arbitrary,
but sufficiently slow, dependence of the wave momentu

flux on time.

IV. THE AVERAGE FIELDS OF VELOCITY AND
VORTICITY IN THE DIFFUSION BOUNDARY LAYER. A
CONSTANT JUMP OF THE WAVE MOMENTUM

FLUX

Consider the most simple, but important case of a con-  ¢—
stant jump of the wave momentum flux across the CL, i.e.
suppose thaE does not depend on In this case, the equa-
tion (30) has a self-similar solution, the outer variables ap-

pear to be self-similar ones and the self-similar solufign
of (30) does not depend on (i.e., on timg. ThenX, obeys
the ordinary differential equation of the second order,

d—HZ+2 +§ d—H—O (31)

d?X, ( s) dXo
The solution of(31) is as follows[the indexeg*) relate to
H>0 andH <0]

H+s/2 2
XO(H)=1+CiJ e MidH,.

+oo

(32

The boundary condition at infinity29b) is taken into ac-
count in(32). Integrating of(32) with respect taH and tak-
ing into account the boundary conditid®99 yields

Phys. Fluids, Vol. 8, No. 12, December 1996

H+s/2
J e MidH, + % e~ (H+(2)%)

+oo

(33

The boundary condition§26), (27) define the system of 3
equations for determining of three unknown val@s, C_
ands as functions ofE which gives

S
C_=- ,
e Sy g(\m—J)
S (34)
here
J= J’ e HdH.
s/2

The values of vorticity at both sides of the CL can be found
from (32). Namely, up to the CL,

—s2/4

ooy’ (353

X(+0)=T, = —

and down to the CL,

e s2/4

—0)=T_= .
X(=0) e My g(m—J)

(35b)

mI'he equation determining as a function off is as follows:

e s m=E(e " -s)(e” (V7).

The dependencs(E) is shown in Fig. 1 and the depen-
dencies ofl".. on E are presented in Fig. 2. A simple asymp-
totic expression can be found fe(=) andI'..(Z) for large
and small values oE, so, for2<1,

§|| |

I

=1+ —
Fi 1_ 2 .
The similar expression for vorticity on both sides of the CL
was obtained,for a Rossby wave on thg-plane, where the
jump of vorticity related to the undisturbed one is the small
value of orders2,

For E>1,

S=+/27,

r.==g

e B2
I =

27E
Substituting found value€, and C_ into the expres-
sions(32) and (33) enables us to obtain the profiles of the
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FIG. 1. The dependence of the constant in the rule of the CL mogporg FIG. 3. The mean velocity profiles in the diffusion boundary layer. The
the jump of vorticity (). jump of vorticity takes values from {the lower curve to 10 (the upper
curve.

average velocity and vorticity in the DBL. The functions tum flux we have determined the velocity profile in the DBL
Vo(H) are presented in Fig. 3 for several valuessbfThe and found the values of mean vorticity on both sides of the
time evolution of the mean velocity profile(7,7) is shown CL for the knownZ=.

in Fig. 4; it corresponds to the dependentégH) for one

fixed E. The velocity profile is widening with time and the v, THE WAVE DISTURBANCE IN THE DIFFUSION

CL is moving towards the incident wave momentum flux. BOUNDARY LAYER (CONSTANT WAVE MOMENTUM
Thus, for the simplest situation of the constant wave momenFLUX)

Consider now wave—flow interaction in the DBL and in
the CL. The wave propagates from the regidnr-> (the
outer region of the floyy where the velocity profile is deter-

o, T
4] 507
. ]
1 307
34 ]
1 1 ]
] 107
2 ;
] Ug 3
] —-107
1 3
. 5 ]
] —~30+
0-1T717lll|I|Illl|l|ll||l||l|,ll||I|IIIT|'TI[ E
0 .
:_4 _50-|||IIIIIl|IIIIIlIII|I|lII|III|III|||||I|IlllllIII]
—-50 -30 -10 10

U

FIG. 2. The dependencies of the values of the mean vorticity at the different

sides of the CLT"..) on its jump(E): 1.T",—the value of the mean vorticity

at the side of the incident wave; P. —the value of the mean vorticity at FIG. 4. The mean velocity profiles,(,7) in the diffusion boundary layer
the side of the transmitted wave. for 7=50, 100, 150, 20@from left to righd. The jump of vorticity=E=2.
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mined by (299. Propagating through the DBL, where the Passing through the DBL transforms the wave fi@8) into
velocity profile is determined bg33), the wave partially re- (373.

flects from the inhomogeneous vorticity profile, then the  Suppose that the initial condition for the equati@®)
wave interacts with the CL partially reflecting, partially for H<1 are imposed in the form of a wave propagating
transmitting and partially absorbing. Note that the region oftowards the CL, i.e.

the flow, where the hydrodynamic fields have the asymptotic

form (209 and (20b), will be called the outer region of the O =H2-ing. d®o_ =<1—i H- W2,

CL; and the region, where the fields obey the nonlinear sys- 0= " dH H '

2

tem (19) will be termed the inner region of the Qbr simply (393

the CL). The inhomogeneous vorticity profile also occurs in For H>1 the solution td36) can be presented in the follow-

the DBL down to the CL, so the transmitted wave scatters onng way:

it. Transmitted through the DBL the wave radiates down, and '

there is no incident wave radiated from minus infinity. As ,

was mentioned above, the fields of the high harmonics are P, _=ap¥2tin

small in the DBL, so in this region we can take into account

only the fundamental harmonic described by the sys@3)  wherea andr are the complex constants, depending on the

which can be reduced to the Taylor—Goldstein equation, parameters of the equatig86). r is the coefficient of reflec-
tion from the DBL,a is the amplitude of the wave propagat-

®,=0 (36) ing towards the DBL for the unity amplitude of the transmit-
ted wave. If the initial conditions foH<1 are imposed as

the wave propagating from the CL.:
The simplest case af?/1?<1 is considered here. When
dd,, (1

s\ (12-in 1) +iu

H+§

S
H+ -

+r 2

dzq)l VOHH N2 a2
dH? v, v, 2

o’V is of or.der unity, ngthing major would be changed, but Do = UDFins Z i g (U2 ¢ins
the expressions of the fields would be more complicated. 0+ " dH 2 K '

The profileVy(H) tends to the undisturbed linear form (39b
(299 for H— *. Taking that into account gives the asymp-

totic form of the field forH—, i.e. the solution in the then. forH>1 the wave field can be written in the following

outer region, way:
Wi (12)+iu
—lu — — 3/2)—i
P y(H—o0)= 7Zp32%1n H+§ oy = P2 =ap3O7 H+§
) (U2)—ip
s (12 +ip +r* H+§ ,
+. 72| H+ > , (379 2
Wi where ( )* denotes complex conjugation. It obviously fol-
i S I lows from linearity of the equatiof86), absence of the criti-
)= R 1 D | y io(86),
Py(H==) TV H+ 2 ' (37 cal point on the interval considered and the fact that,
— *
. o ~Po--
wherey = VRi—1/4. The facton(*?*!* arises due to nor- If the initial conditions for(36) are formulated in the

malization. The formula37b) is the radiation condition for  form (38), then forH>1 the solution is a linear combination
H——o0; it means that no wave propagates from the innerpf ®y, and®d,_, namely,
region of the flow down to the CL. ) ) _

The asymptotic expressiorf20a valid in the outer re-  ®.=AvE H[ Dy +RDo |A|~ Wik =200, (40)
?rllznu?r:;zs,%& ﬁéﬂetﬂglfs%;?sn C?;g;t a?]]:jt?;gB; eon On the other ha_nd,40) must coincide wit(373. Comparing
set. The amplitudes and reflection coefficients of the wave§37a) and(40) gives
on the “input” and the “output” are connected by the so- _7=|a|A¢a(1+|R||r|e  (2¢at o~ ¢r)
lution of the Taylor—Goldstein equatig36) _ _

The expressions connecting’ and.7 (378 with AP X | A7 @ik g, =2 (41)
and BY from (218 and.7 (37b with AY and BY, are
found below. Introduce the symbats=A® (the amplitude e 2k i
of the wave, propagating towards the CL from its outer re-~ 1+|R||r|e'CeatermeR)| A~ (4ky =200y
gion) andR (the reflection coefficient of the unit amplitude (42
wave from Cl. Then, as was shown inl, B
= ARJA|~@B)ir+ - And for H<1 the expression for the
stream function disturbance is as follows:

|r|+|R|e—i(2<ﬂa+¢r—wR)|A|—(4/3)i#+v—2iu+

Herel|a|, ¢,; |r|, ¢, and|R|,¢r are the modulus and argu-
ments of the complex values r andR. The complex values
r anda can be found by solving the equati¢86) with the

By = AU i, initial conditions(399. The dependence of, a, ¢, and ¢,
_ _ _ on E for the set of the Richardson numbd&sare presented
+ RHM2 s | A~ (= 2000 (39 inFigs. 5,6, 7, 8.
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Solving the equation(36) with the initial conditions down to the CL. But it slightly affects the dynamics of the

(37@ for H——e _(With th(% corres(gonding first derivative CL, because the transmitted wave amplitude is very small for
gwis:fthe egp;gssmns féx= andB™' from (223 and(22b moderate and large Richardson numbsesl); it is of order
y.f rom (370). d ab hat th D he*“T. So the wave field up to the CL can only very slightly
twas assumed above, that the vorticity Jump across Qe enq on time, and andR are practically constant for the

CL does not depend on time, and so the amplitude of th?vave momentum flux jumg=). Then for the constari, it
incident waveA and the coefficient of reflectioR from the follows from (41), (42) that in the outer region of the’flow

t(f]L 'fT th|e gutertrgglon gf thet_CLn?\; n th? _O;Jlter_frtehglon é).f the amplitude of the incident waveZ and the wave reflec-
he owg. 10 nfo Hepen on ||r'r;e. h orehs rctly, 'f Ide'rahla_ tion coefficient.”2 depend on time. This time dependence
tion condition forH——cc s valid, then the wave field Inthe -, iso5 from the reflection of the incident wave from the time-

lower outer region depends on time, because the wave trang; - - I
. ; ependent velocity profile in the DBlwidening and mov-
mitted through the CL scatters on the time dependent DBL P y P w g
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0.8 4
0.6 3 3
lal : 3
0.4 3 N ]
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7 \ 1
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FIG. 6. The dependence ¢&] on E —Ri=0.5, --Ri=1, ———-Ri=2, FIG. 8. The dependence af, on E —Ri=0.5, --Ri=1, ———Ri=2,
— Ri=3. ——Ri=3.
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ing). To provide conservation in time of the sum wave mo-
mentum flux in the incident and reflected waves the \
amplitude._Z and the reflection coefficien# should depend 3
on time. Alternatively, the source of the wave disturbance
placed into the outer region of the flow should depend on
time according to a certain law. On the other hand, if the
source placed in the outer region of the flow is, for example,
time independent, then the jump of the wave momentum flux 2
depends on time. This case is discussed below in section VII. =

[}

VI. THE CHARACTERISTICS OF THE CL

To find the parametera andR in (41), (42) the system
(19) for the fields in the CL vicinity should be solved. But
before that the expressi@@1a connecting the amplitudes of
the incident, reflected and transmitted waves with the vortic-

PN T S SO T T T T S O U O A T W YOS T W 0 Y Y AV

ity jump across the CL will be rewritten in terms gf—the o+———rrr—rrrr—-r—rrr
coefficient of transmission of the wave through the DBL 0.0 0.4 0.8 1.2
down to the CL. Taking into account conservation of the A
wave momentum flux in the waves down to the CL yields

o (IBY2— AL = ul 7|2 (43 o x fo the folowing values of the Richardaon number: Re05, 2.
And (218 together with(43) gives Ri=1, 3.Ri=2, 4.Ri=3. Prandtl numbePr=0.71. Dashed curves represent

the functionZ(\) calculated by(46).
NI =T )= JAX1-|R) —ul7 . (44)
. . normalization of the vorticity by its value in this regiprn
Th ten(1 I I tral 2
e system(19) was solved numerically using a spectra the present paper each curve in Figs. 9—14 corresponds to the

model which was described in detail inAfterwards all the tant Richard ber in th disturbed . f th
characteristics of the flow and waves can be found as fun constant Richarason number in the undisturbed region of the

tions of the parameters of the flow, namely, the parameter 01!0\'.\/' As in the papef the simple formul'a fon(=) which s
nonlinearity A, the Richardson numbeRi and the Prandtl valid for smaII|R| and|Tr| can be obtained frort45). It is
numberPr. The parametek was determined by the ampli- as follows:

tude A of the incident wave in the outer region of the CL,
because for the simple case of the constant jump of the wave
momentum flux,Z depends on time, buA does not[see A
(41)]. In this case the inner variables are renormalized in the
following way:

N| =1
N

; (46)

3.5

h= Potg . _ Pold . _ Botg 3
|A|2/3- ¢ |A|4/3' |A|27Sv :
and\ is the following: 3.0 ]
) (0ld) 1
A= W é
2.5 3
Taking that into account enables us to represent the flux ]
equation(44) in the form ]
NI =T )= p (1= |R[>) = pu|Tr[?, (45 2.0 ]
hereTr=77|A|. It should be mentioned that thereN$'? in
(44) and\ in (45). ]
The dependencies an of the values appearing i@5) 1.5 3
for a set of Richardson numbers are represented in Figs. ]
9-13, namely E(\)—in Fig. 9, I'.(\)—in Fig. 10, ]
F_(A’)_In Flg. 11, |R|()\)_in Fig. 12 and|Tr|e7TM()\)_in 10 : LA L L I S L L L) T 1 1 T 17 F T 1T 7T
Fig. 13. Besides, the dependenceggi\) which is needed 0.0 0.4 0.8 1.2
for calculation of the values# and.7 by (41) and (42) is ‘ A

presented in Fig. 14. It should be mentioned that the depen-
dencies in Figs. 9-14 differ from the similar ones frém FIG. 10. The dependence of the vorticity value above thelClon \ for

which were obtained for the constant Richardson number i, following values of the Richardson number: Ri=0.5, 2. Ri=1, 3.
the outer region of the CL down to the Gbecause of the Ri=2, 4.Ri=3. Prandtl numbePr=0.71.
Phys. Fluids, Vol. 8, No. 12, December 1996 Yu. I. Troitskaya and S. N. Reznik 3323

Downloaded-25-Apr-2003-t0-192.58.150.40.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/phf/phfcr.jsp



T
1.0 % |—— 0.8 . |TI‘|e
0.8 1 ]
1 0.6 1
3 2 ]
0.6 ]
: E 2
E 5 0.4 ]
0.4 ]
3 4 ] 3
] 0.2 3
0.2 7 ] 4
0.0 = T T T T T 1 T LI DL T 7T T T T T T T T T Ll T T 1 7 F T ] 0.0 ] T T T T — T T T T T T T T T T T T T T T
0.0 0.4 0.8 1.2 0.0 ' ' 1h

A

FIG. 11. The dependence of the vorticity value below theICLon \ for

A

FIG. 13. The dependence of the normalized value of the transmission coef-

the following values of the Richardson number: Ri=0.5, 2. Ri=1, 3. ficient|Trje™ on\ 1. Ri=0.5, 2.Ri=1, 3.Ri=2, 4.Ri=3. Prandtl number
Ri=2, 4. Ri=3. Prandtl numbePr=0.71. Pr=0.71.

wherel is determined by35a. The dashed curves in fig. 9
correspond to the relatio@6). They are close to the curve
obtained numerically.

VII. THE TIME-DEPENDENT JUMP OF THE WAVE
MOMENTUM FLUX

similar. And the characteristics of the fieldgsamely, the
mean velocity profile, the law of the CL displacement, the
values of the mean vorticity up and down the )dh this
region can be obtained easily. In this case the amplitude of
the incident waveA and the reflection coefficierR in the
outer region of the CL are constant in time. But in the outer

All the previous results concern the case of a constanegion the incident wave amplitudeZ and the reflection
wave momentum flux propagating towards the CL. In thiscoefficient.”2 depend on tim¢see(41), (42)]. On the other
case, the evolution of the mean fields in the DBL is self-hand, if the source of the wave disturbance is more realistic

1.0 0.0 5
1 e /m
0.8 -0.2 ]
1 1 4
0.6 7 -0.4
IRl g
0.4 J -0.6
0.2 4 —-0.8 3
o.o-lll|l|||l|||||lllll||||||1||l| —1-0I""""'I""""'I""""l
0.0 0.4 0.8 1.2 0.8 1.2
A A
FIG. 12. The dependence of the absolute value of the reflection coefficierfelG. 14. The dependence of the phase of the reflection coeffigienh A
|R| on \ for the following values of the Richardson number:Ri=0.5, 2. for the following values of the Richardson number:Ri=0.5, 2.Ri=1, 3.
Ri=1, 3.Ri=2, 4. Ri=3. Prandtl numbePr=0.71. Ri=2, 4. Ri=3. Prandtl numbePr=0.71.
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(for example the corrugated surface in the outer region of théor the jump of the wave momentum flux, expressed by the
flow) the values of the wave momentum fluxes on both sideslimensional parameters of the flow and the surface:

of the CL and the jump of those will depend on time. The kgt | W o 2(1—|.72]2)

origin of that is as follows. The wave, radiating by the source == a1 o a7
in the outer region of the flow, propagates towards the DBL, 2voUozZF
partially reflects at the inhomogeneous profile of vorticity in In the zeroth order inZ it follows from (47) and (48)
the DBL and partially transmits. Then the transmitted wavethat W,=u,,z-h, and (49) gives

interacts with the DBL behind the CL. Since the velocity

profile in the DBL depends on tim@ecause it is spreading =(0) _ 1
the reflection coefficient depends on time as well. It means -

that the momentum flux, which is equal to the sum of fluxesro jump of the wave momentum fii&® is constant and

in the incident and reflected waves, depends on time. In thig,e ye|ocity profile in the DBL and all the characteristics of
case the simple self-similar velocity profile can not be ob-pe fio\y in the zeroth order can be obtained from Figs. 1—14
tained. And the full equatiof30) with the boundary condi- by Ri and =@, namelys®, A, 1@ RO ((© 300 The in-
tions (26), (27), (293, (29b), together with the equatio{36) dex© is omitted below. Then the reflection coefficient of the
for the wave disturbances in the DBL, should be studied. Itiyave in the outer region of the flow is

impossible to find the general solution to the problem, but

(49)

the approximate solution can be obtained for the certain situ- 2= v?#e'¢r(|r|+ Re '(2¢a* ey~ 2y, (50
ations. It obviously follows from (50) that.72 depends on time as

First, if the Richardson number is not very close to 1/4,iha sum of two cadog ), wherew is related tor by (16).
the transmitted wave behind the CL is very small, so thecgicylating all the parameters in the zeroth order.jh
wave momentum flux in the transmitted waB(—=)] can  gnaples to find the first order term &. Comparing(47)
be negllected and the jump of thevaave momentum flux ig;q (48) gives in the first order in7, that Wy=ug,z¢h,
approximately equal ta'(+«), and E=T(+«)/\. Second, 1_%) Taking into account Tp=gp,~2innA [where
since the time-dependence of the wave momentum flu =(ho/Ze)?¥ (. /)*®] and the normalizing conditions
arises due to the reflection of the wave from the time'giveso F *
dependent velocity profile, one can expect that the time-
dependent component of the wave momentum flux is small _ 1 2 o o
when the reflection coefficient is small. As one can see from =~ 2, Kaeto Noze[ 1= 2Re(ry v+ 150742)].
Fig. 12 and from comparison of Fig. 5 and Fig. 9, that e lai(o—2 I A) ol ai(¢a—2u In ) _
IR|,|r]=<0.1 for the moderate values of the Richardson numHere ri=lrle . T=|Rle o M A

ber (not very close to 1/4and\>0.2. Then the solution of j[‘;“f:gl__'.““+t'hso the ]ufr?ﬁ of thetwa:/e momentlim fl(tj»f[r?crtoss
the equation can be searched as a serieg.in € IS the sum of the constant component and Ihe term,

oscillating in time as the sum of two dbsg 7).

Consider in this way the flow over a corrugated surface Th ficit b hed in the simil
when the reflection coefficien® andr (and.7%) are small. € mean vorliCityy can be searched In the similar way,
namely as a sum of the mean and oscillating terms,

The undisturbed velocity profile of the flow in the dimen-
sional variables is as follows: x=xo(H) = 2Re x1(H) 2“1+ y,(H) v?#2), (51)

Ug(Zg) =Ug,Zg- The parametes(7) in the law of the CL displacemerti5)
can be determined in the same way:

The corrugated surface placedzgt=z- has the form . .
J P A=z s=50—2Rgs; V2 #1+5,p? #2),

— ik gx
Z4=2z¢+hoRee™d™, (47) Then y; and y, obey the following equations:
hereky is the dimensional wave number. X1 SOV dx1o
The stream function of this flow outside the DBL is as -5z +2{ H+ 7) —H TAme
follows:
_ (0)/9)12 .
2 (112)-iu (12 +i =C.e M7 s (1-2iuy; (52
UozZg ikgxg| | 2 | & , .
W=——+Re Ve d | — + A - : hereC. are given by the formul&34). The solution to the
F F 48) equation(52) has the following form:
Here.7 is the reflection coefficient, the absolute valueBf Y1H)= [% - B<+1,2>D71+2_
coincides with that of% (42) and the argument is deter- ' 2 12
mined by the normalization condition. 5
The natural scaling values of this problgsee sec. )l x| | H+ — ‘Q) e [H+(s 9212 (53)
areLy=2z¢, Uy=uy,Ze, then the dimensionless variables be- 2

comez=2zy4/Z¢ , X=Xq4/Zr , K=Kyzg , y=VI(up,Zf), etc. The HereD _1.,i,, (Q) is the solution to the Weber equation,
Reynolds numbeRe= (u,,z2)/v,. Taking into account this ’

scaling and the expressiad@8) for ¥ and neglecting the dZDn+ - E_Q_z D.—0
transmitted wave foRi=1 gives the following expression dQ? 2 4)° " 7
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vanishing forQ—oe. (1.2

The expressions for the mean velocity (H) vanishing 5 r N
for H—oo, which correspond t¢53) are the following:
4
S12 Ca H+sOpr) 2
1’2274-75112‘};% e HldHl X
(12 [+ —H2 T ]
+Bt’ D_l+2iM1(iHl\f2)e 1dHl. 2 ///’

The valuess, , B2 are determined by the boundary con-
ditions:

X1.A+0)—x1—0)=EOr,,
Vlvz(iO)ZO

Two systems of three equations for determining two sets of
three complex values,; ,B}) ands,,B+ (2 follow from the
boundary conditiongs4). It obviously follows from(51) that

the values of vorticity on both sides of the QL) can be
represented as the sum of the cons(ﬂﬁfé) and the oscillat-

ing components with the amplitud¢g>?):

[.=TO—2RgT'Y). p2ik 7@ 2k-p)y, 124

o

(54
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The complex valuess;, I'? are functions of two
parameters-=2©, Ri (or A9, Ri taking into account the de-
pendencé&E ©(\ ) presented in Fig.)9 The example of de- 0.8
pendencd +2(2?) is shown in Figs. 15a,b foRi=2. The

linear approximation inz is obviously valid for2©<1.5 or

as it follows from Fig. 9 forn>0.2. 0.4

VIIl. CONCLUSION
0.0

In the present paper a stratified shear flow over a corru-
gated surface is considered. The velocity of the flow changes
its direction at some level, over the surface. Then the criti-
cal layer(CL) is formed in the vicinity of this level, where = -0.4
the flow velocity coincides with the phase velocity of the lee
waves(which is equal to zero in this problemThe corru-
gated surface is supposed to have the simple sinusoidal g 4 e

shape, i.e. the elevation of the surface is 0.0 0.5 10 15 2.0 2.5
(b) o

pada s v d e e cen e ev e b e v gyl
[eN]
/
RERY
i

h=hg coskgxq

(x is the horizontal coordinatelf the amplitudehy is small ~ FIG. 15. (8) Complex amplitudes of the oscillating components of the mean
enough, that the parameter-hy/z,<1, and the Reynolds :’0?}%%’ L#r)] tOdthehC(;-—F ¢2 | %I)(::Z) %t-))RgF‘P),I 2. Im(FI(_&t’),dS- R?trr?))' 4._|
n_umberR e,: UO_/(VOK) is large enough, then the linear invis- Ier;:ing+ c'omp(i)n:rsltseofctlrjlgleme;nﬂvérticity%rg\?vr?)ioa?}g I(l:J]::f—%,oRi=e2?i‘fl
cid approximation can be used for wave far from the CL.rgr®), 2. imr®), 3. R&r?), 4. Im'?). The dashed curve EO(Z).
And the complex amplitudé(z) of the stream function dis-
turbance obeys the Taylor—Goldstein equation with singu-
larities in the CL. Say(z) have the algebraic branch points properties of this kind of the CL in the strongly stratified
in the CL. For example, for the wave propagating towardsshear flows are obtained inThe brief description of them is
the CL, given below.
12— The jump of mean vorticity(Fig. 163 or “bending”
b=(24—2p) K, (55 i ) )
of the velocity profile(Fig. 16 appears across the CL.
whereu = Ri—1/4. When Ri>1/4 the jump appears in the O-th order of
To remove singularities some additional factors shouldThe width of the jump is equal to the width of the Ghro-
be taken into account: viscosity, nonlinearity andportional to ¢3. The value of the vorticity at the side
nonstationarity>~'° In the present paper we concentrate onof incident wave ¢Uy/dzy|.) is larger than that at the
the combined effect of nonlinearity and dissipation in theother side @Uy/dz4|_), and the more the amplitude of
stationary CL forming after the large time from the begin-the incident wave the larger the vorticity jump
ning of the process of wave—flow interaction. The main(dU4/dzy|, —dUg/dzy| ). The jump of vorticity is deter-
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(b)
@ FIG. 17. The form of the mean vorticity profile in CL and DBL.

FIG. 16. The forms of the mean profiles of vorticit®) and vorticity (b) in
the vicinity of the CL. ) o ] o
ity profile in the starting moment and at infinity. The average

density obeys the similar equation and the boundary and ini-
tial conditions.
mined by the jump of the wave momentum flux at the both  The evolution of the flow after large time from the be-
sides of the CL. In the dimensional form the relating expresyinning of the process in comparison with the diffusion
sion is as follows: time at the scale of the C[13) is determined by the quali-
tative properties of the equatid®). At that time the flow
dUy in the vicinity of the CL is quasi-stationary. Since the dif-
VO(E ):<Ud~Wd~>|+—<Ud~Wd~>| , (56 fusion is decelerating process the CL becomes “more
- stationary”” with time. The jump of vorticity determined by
(56) appears like in the stationary CL. The value of the
whereyy, is the viscosity coefficienty_ , wy_ wave distur-  vorticity determined at the side of the wave incident is larger
bances of the horizontal and vertical velocities, and)  than the undisturbed one, at the other side it is smaller than
means averaging over the wave disturbances. In the dimemndisturbed one. CL appears to be the kind of source of
sionless form this expression is given (813. It reflects the the mean vorticity and the diffusion of vorticity from the
fact that in the stationary CL the radiation force is equal toCL occurs due to viscosity, so the transitional region from
the viscous force. Another property of the dissipation nonthe CL to the undisturbed region is formirigig. 17). This
linear CL is the reflected wave. The well known fact is, thatregion is called the diffusion boundary layéDBL). Its
the wave of infinitesimal amplitude does not reflect fromscale is the diffusion lengtk/\t, i.e. it grows in time. The
stratified shear flow with the homogeneous basic vorticityCL is the point at the velocity profile, where the flow veloc-
profile [see(55)]. Alternatively the wave of small but finite ity is constant and equal to the phase velocity of the wave.
amplitude reflects from the inhomogeneous profile of then this point, there is the break at the velocity profitee
mean vorticity with the jump across the CL. The jump of scale of the breaks) is finite but small in comparison
vorticity and the complex reflection coefficient are the func-with the diffusion length according t@.3)]. This profile can
tions of the parameters of the flow in the CL are the follow-be realized only if the CL is moving towards the incident
ing: the Richardson numb&i—and the nonlinearity param- wave (see Fig. 4 The similar deformation of the stratified
etern=1/(s2 Re) (A is the inverse inner Reynolds number of shear flow due to nonlinear interaction with internal waves
the flow in the CL vicinity. was obtained by Frittsin numerical experiments. Some
The jump of vorticity(or “bending” of the velocity pro-  similar deformation of the mean flow can be seen on the
file) in the CL vicinity means that the deformation of the photos of the laboratory experiment<? but these effects
initial velocity profile grows with the distance from the CL. were not discussed in those papers. So for the constant jump
The question arises, how this velocity profile can be realizedof wave momentum flux we answered the questions for-
The same question concerning the flow velocity deformatiommulated above, how the broken velocity profile can be real-
arose in the works by HabermaA The other question is as ized and what the values of vorticity at the both sides of the
follows. If the initial velocity profile, the stratification and CL are.
the amplitude of the incident wave are known, what the val-  Now we return to the problem of interaction of the lee
ues of the vorticity at the both sides of the CL after thewaves radiated from the corrugated surface and the stratified
process of relaxation will be. To answer these questions thehear flow, formulated above. Suppose that the corrugated
initial problem of the internal wave propagation towards thesurface is placed to the undisturbed region of the stationary
CL in the stratified shear flow is solving. The average hori-stratified shear flow, where the velocity profile is lin¢gig.
zontal velocityu, obeys the diffusion equatiof®), which  18). Is the jump of the wave momentum flgand vorticity)
demonstrates that the average acceleration of the fluid paconstant? In general the wave flow interaction is the follow-
ticle is determined by the friction force and the radiationing. The wave, radiating by the surface propagates towards
force. The equation is accompanied by the boundary and thine DBL; partially reflects, partially transmits. Then the
initial conditions of the absence of disturbances of the veloctransmitted wave interacts with the CL: partially reflects, ab-

dUy
dzg

+
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